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Strain-induced gradients of local electric fields in semiconductor quantum dots can couple to
the quadrupole moments of nuclear spins. We develop a theory describing the influence of this
quadrupolar coupling (QC) on the spin correlators of electron and hole “central” spins localized in
such dots. We show that when the QC strength is comparable to or larger than the hyperfine coupling
strength between nuclei and the central spin, the relaxation rate of the central spin is strongly
enhanced and can be exponential. We demonstrate a good agreement with recent experiments on
spin relaxation in hole-doped (In,Ga)As self-assembled quantum dots.

PACS numbers:

The spin of an electron or a hole in a semiconduc-
tor quantum dot is the main component of numerous
proposed spintronic and quantum computing devices [1].
Spin decoherence and finite spin lifetimes are currently
the major factors that limit our ability to control spin
states in dots. A single “central” (i.e., electron or hole)
spin in a dot interacts via hyperfine coupling with a large
number (10 —10°) of nuclear spins. The net effect of this
coupling to the nuclear spin bath can be characterized by
an effective Overhauser magnetic field By, that acts upon
the central spin. Within a quantum dot ensemble, each
central spin precesses around a different B,. If By is
time-independent, such precession alone cannot lead to
complete relaxation of the central spin polarization. This
is evidenced from the observation of spin echoes [2] that
can be used to cancel the dephasing of central spins in an
ensemble of dots with different constant B,,. However,
stochastic dynamics of the Overhauser field B,, induces
irreversible relaxation of the central spin and loss of co-
herence [3, 4]. The physics that leads to changes of By,
and its corresponding influence on central spin relaxation
are the subject of considerable theoretical debate [4-9].

It was suggested that, at microsecond time scales,
the dynamics of the Overhauser field is dominated by
hyperfine-mediated nuclear co-flips, which originate from
unequal strengths of the hyperfine couplings of the cen-
tral spin to different nuclear spins inside the same dot
[4]. Numerical simulations by Al-Hassanieh et al. [9]
showed that such co-flips generally lead only to a log-
arithmically slow central spin relaxation. In contrast,
recent experimental studies with hole-doped (In,Ga)As
quantum dots reported a nearly ideal Lorentzian shape
of the spin noise power spectrum, indicating exponential
relaxation of central hole spins rather than a power-law
or logarithmic relaxation [10].

Here we show that quadrupolar couplings (QC) of nu-
clear spins to the strain induced electric field gradients
inside typical semiconductor quantum dots can induce
relatively fast dynamics of the Overhauser field By,, and

consequently accelerated relaxation of electron and hole
spins in weak external fields. Our model directly applies
to InGaAs self-assembled quantum dot systems, which
are among the most popular platforms for spin memories
and qubits [11, 12]; however, the model applies gener-
ally to all dots composed of quadrupolar-active nuclei.
We model such a nuclear spin bath by introducing static
fields acting on nuclear spins due to QC, in addition to
the hyperfine couplings to the central spin. We numer-
ically compute the dynamics of our model by applying
a time-dependent mean field (TDMF) algorithm [9] that
allows us to study the relaxation of a central spin cou-
pled to an unpolarized spin bath containing up to ten
thousand nuclear spins.

At low temperatures and at time scales shorter than
a millisecond, a Hamiltonian that captures central spin
dynamics in quantum dots has the following form:

N
A =37 (o fix8: 471 (FSs +11y5,)) +9:B.8. +

N i
gch:ch + gyBySy + ; ’y?Q <(I1 'ni)2 - I(I3+1)) 7(1)
where S and I; stand for spin operators of, respectively,
central and nuclear spins; B, is an applied magnetic
field component along the axis «; g, is the correspond-
ing component of the central spin g-factor. Index i runs
though all nuclear spins that interact with the central
spin. Parameters Wlil and 7% are the out-of-plane (lon-
gitudinal) and in-plane (transverse) coupling strengths,
respectively, between the central spin and i-th nuclear
spin. Henceforth we drop index ¢ for coupling strengths
when we discuss their typical magnitudes. For electrons,
| and v, have similar magnitudes, but v and v, are
quite different for holes. For the latter case, the ratio of
transverse to out-of-plane couplings, § = 7. /| varies in
different samples in the range [10, 13] 8 ~ 0.1-0.7. Addi-
tional coupling terms in the Hamiltonian such as ~ S’zfm



are allowed but they were estimated to be negligibly small
both in electron and in hole-doped dots [13], and we will
disregard them. We also disregard the Zeeman coupling
between the external field and nuclear spins because we
consider only weak external fields, about the size of the
Overhauser field (~ 25 Gauss for an InGaAs hole doped
dot [10]).

The last term in (1) describes QC with characteristic
strength 'yé, and coupling anisotropy vector n; for the
i-th nuclear spin. QC is allowed for nuclei having spin
larger than 1/2. QC has previously proved important in
experiments on polarized spin bath relaxation in GaAs
[14-18]; however, it has been generally disregarded in
the context of central spin relaxation with initially un-
polarized nuclear spin baths, both in electron [5, 6, 9]
and in hole-doped [13] dots. We believe that this omis-
sion cannot be justified except in certain materials, such
as Si, that contain predominantly spin-0 or spin-1/2 nu-
clei. In the widely studied InGaAs dot system, the most
abundant indium isotopes *!°In and '3In have I = 9/2,
and Ga and As isotopes have I = 3/2. According to
many studies [14, 15, 19], 7o ~ 2 — 4 MHz for indium
atoms in GaAs at a typical strain of 3-4% inside a dot,
which translates for spin 9/2 into a characteristic level
splitting v. = yg|I| ~ 10 MHz. This value is at least
an order of magnitude larger than the effective hyper-
fine coupling ) ~ 0.1-0.5 MHz in a typical hole-doped
quantum dot with N ~ 10° nuclei [13, 20]. Recent NMR
studies of InGaAs dots also showed that the directions of
QC anisotropy axes n; are strongly non-uniform inside a
dot and do not align with the sample growth anisotropy
[19]. To include this fact, we will assume that the local
anisotropy vector n,; for the i-th nuclear spin points in a
random direction, which is chosen independently for each
nuclear spin. Note that this does not exclude arbitrary
spatial correlations of different n; inside the dot.

The Hamiltonian (1) belongs to the class of spin bath
models, in which noncollinear static fields act on nuclear
spins independently of the coupling to the central spin.
In order to compare different models of this class, we
introduce a parameter 7. that characterizes the typical
energy level splitting of nuclear spins by static fields. Our
theory shows that this parameter determines all the es-
sential effects of the static fields irrespective of the details
of the interactions. This renders our theory applicable to
spin baths with different sizes of nuclear spins I. Our
results extend beyond the Hamiltonian (1). In fact, the
minimal model of our class of spin baths can be formu-
lated in terms of the central spin problem with only a
nuclear spin-1/2 Hamiltonian:
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FIG. 1: Spin correlator Ca(t) = (6:(t)6-(0)) at 7. =0, v =
() =1, N = 700 nuclear spins, and B = 0, shown up to
times (a) t = 5/ and (b) t = 0.5/~ (time ¢ is in units of
1/)- Here 8 = 1 /7 is the hyperfine coupling anisotropy.

Pauli operator of the central (electron or hole) spin, 6%
is the a-component of the Pauli operator for the i-th nu-
clear spin, and +% corresponds to the size of the charac-
teristic level splitting for the i-th nuclear spin with quan-
tization axis n'.

We will compare, in Fig. 2, the dynamics of the model
with the Hamiltonian (1) for the spin bath with I = 1
and the minimal model (2) at the same characteristic
value of v.. Results are almost indistinguishable, so in
the rest of the main text, we will show numerical results
only for the minimal model to illustrate all the effects.

In the supplementary file [21], we describe the TDMF
approach and provide additional numerical tests for evo-
lution with N from 250 to 10000 nuclear spins, the Hamil-
tonian (1) with I = 1, and the classical limit I > 1,
which are all found to be in vey good agreement with the
theory that we develop here.

We present our results for central spin temporal corre-
lators that were obtained for the model (2) with N = 700
spin-1/2 nuclei at equilibrium. Before each simulation,
we chose 'yﬁ = 29| %713, 'yi = 2ﬁ'y|| *19; and vé = 29.%T3;,
where r1;, r9; and r3; are random numbers from a uni-
form distribution in the interval (0,1). We set the en-
ergy scale so that v = 1. Note that we chose widths
of parameter distributions to be comparable to the mean
values as suggested in [9]. Vectors n' point in random
directions and the time step was dt = 0.0001. Averag-
ing was performed over 1000 and over 30000 randomly
chosen initial state vectors (both for central and nuclear
spins) for the calculation of, respectively, noise power and
real-time correlators.

In Fig. 1(a) we show our numerical results for the cen-
tral spin correlator, Ca(t) = (6,(¢)5.(0)), obtained from
the evolution of the Hamiltonian (2) in the absence of
quadrupolar interactions (7. = 0). Different curves cor-
respond to different values of the coupling anisotropy f.
All curves start at C5(0) = 1. Figure 1(b) resolves the
part of Fig. 1(a) with ¢ < 0.5. The appearance and shape
of the deep local minimum of Cy(t) in Fig. 1(b) is well
understood [4, 13] as being due to dephasing caused by
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FIG. 2: (a) The real time central spin-spin correlator for dif-
ferent magnitudes of the static field 7. in spin-1/2 bath. (b)
Exponential fit (dashed red) of the spin correlator (blue) for
spin-1/2 bath at 7. = 12 in units of 7). (c) Central spin
correlator in spin bath with 7 = 1 and quadrupole coupling
74 = 47¢. (d) Exponential fit (dashed red) of spin correlator
in spin-1 bath at 7. = 12. In all cases: = 0.2 and B = 0.

ensemble central spin precession around the Overhauser
fields Bn = 3,0, [y (62)% + 7l (60)y + 7] (60)2]. Fig-
ure 1(a) shows that a fraction of the central spin polar-
ization additionally relaxes during a longer time interval
that is of order 1/(7)). This relaxation follows from the
co-flip effect [5, 6, 9]. Figure. 1(a) confirms previous ob-
servation [9], which was made for the case § = 1, that
only a fraction of the central spin polarization relaxes via
this mechanism on time scales of interest. It also shows
that the correlator decay is strongly suppressed by hy-
perfine coupling anisotropy. This means that standard
co-flip effect cannot explain the observed spin relaxation
at a fraction of a microsecond in experiments with hole-
doped dots [10, 11, 22], for which 1/(y|) corresponds to
several microseconds [13].

Figure 2 shows the central spin correlator Co(t) for sev-
eral different mean values of QC [as tuned by the static
field -y, to compare spin-1/2 bath in Figs. 2(a-b) and spin-
1 bath with v¢, = 47/ in Figs. 2(c-d)] at strong anisotropy
B = 0.2. The effect of . # 0 is considerable. Even at
Ye = 0.2 < (7)), relaxation of the central spin is already
much faster than at v, = 0. For 7. > v, we find qualita-
tive changes: the local minimum disappears, relaxation
becomes almost complete and furthermore becomes ex-
ponential [see Fig. 2(b)]. At 7. > 8, the exponential
relaxation rate saturates at a value that does not depend
on . any longer. Figures 2(c-d) show analogous results
for the nuclear spin bath with the Hamiltoninan (1) and

LI

FIG. 3: For 8 = 0.2: (a) Typical Overhauser field dynamics
for 7. = 0 (pink line) and . = 8 (blue). (b) Real time
Overhauser field correlator C3*(t) = (B, (t) Bn-(0)).

I = 1 with 'yé) = 44%, which corresponds to the same
characteristic splitting of energy levels by QC. It shows
that by changing the size of spins and form of the cou-
pling but keeping the same characteristic 7., the form of
the central spin correlator does not change.

To better understand this change of behavior, it is in-
structive to look at the dynamics of B,,., the Overhauser
field component along the z-axis. Figure 3 shows exam-
ples of B,,.(t) starting from a random initial condition for
all spins. When v, = 0, B, is practically frozen. How-
ever, for 7. > | values, By, quickly fluctuates with the
amplitude of the typical Overhauser field strength. Fig-
ure 3(b) shows that in the latter case, the bath spin corre-
lator CP2(¢) = (B,,.(t)B,.(0)) decays during t < 1/7.
to a smaller but nonzero value. For . > ), nuclear
spins simply precess around their local static fields from
the QC. Fluctuations that are seen in Fig. 3(a) are then
merely due to the difference of precession frequencies and
precession axis directions for different nuclear spins in one
dot. In contrast, when 7./ < 1, nuclear spin preces-
sions are synchronized by a stronger hyperfine coupling
that suppresses fluctuations of B,,..

When 7. > 7, there can be two distinct regimes of
central spin polarization dynamics. The first regime ap-
pears when fluctuations of the Overhauser field are so fast
that the adiabaticity conditions break down and the cen-
tral spin polarization cannot follow the direction of the
Overhauser field. This most likely can happen when B,,,
passes through zero values and the Landau-Zener tran-
sition probability, prz = 1 — exp(—n(B,1)?/v) is sub-
stantially different from unity. Here v = (dB,,./dt)B, .—0
and B, | ~ v VN is the typical value of the Overhauser
field transverse to the z-axis direction. In this case, each
time B, changes sign, the central spin has substantial
probability of not following the Overhauser field so that
its dynamics become stochastic with exponential relax-
ation of the central spin correlator [23]. To estimate pr,z
we note that, according to Fig. 3(b), when ~. > v, the
time 1/, sets the scale for the correlator decay time of
the Overhauser field. The latter changes during this time
by the amount 0 B,,, ~ 7||\/]V. Hence, the rate of change
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FIG. 4: (a) Real time spin correlator and (b) frequency power
spectrum P(w) = [ dte’*(6.(t)5.(0)) for different values of
external out-of-plane magnetic field B.; 7. = 8, and 8 = 0.2.
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FIG. 5: Central spin correlator at 8 = 1 in zero external field:
(a) Real time correlator and (b) frequency power spectrum.

of the Overhauser field is v ~ 7|V N+., and exponential
relaxation can occur when two conditions are satisfied:

Ye >, and 1= B2y VN /e < 1. (3)

For our numerical test with N = 700 and 8 = 0.2, we
find that (3) is satisfied when 7./ ~ 1. This result is in
agreement with Fig. 2. The exponential relaxation time,
Trel, Toughly corresponds to the value of 1/v. at which
prLz ~ 1/2,ie. T ~ 1/[ﬁ2fy||\/ﬁ]. For the hole-doped
dots [10, 22], we assume N = 10°, § = 0.2, 7./7)| = 25,
which gives n = 0.4 < 1, i.e. it agrees with the observed
Lorentzian shape of the hole spin noise power spectrum
in [10]. Considering that 1/ corresponds to several
microseconds in hole-doped dots, we find the relaxation
time to be a fraction of a microsecond, which also agrees
with the experimentally measured value 7y ~ 0.4 us at a
zero external field [10]. Our model is also in good agree-
ment with other experimental observations: For example,
when an external out-of-plane magnetic field was applied,
the central spin relaxation was suppressed [10, 11] when
this field exceeded 'y”\/N . In Fig. 4(a) we confirm this
fact numerically. Figure 4(b) also shows our numerical re-
sults for the effect of an applied magnetic field on the hole
spin noise power spectrum, P(w) = [ dte™'(6,(t)6.(0)),
which is in good agreement with experimental measure-
ments of this spectrum in external fields [10, 11].

The second regime corresponds to the case when fluc-
tuations of the Overhauser field are strong but the central
spin follows the direction of the Overhauser field adiabat-

ically. This happens when

Ye >y, n> 1L (4)

For electron-doped InGaAs dots, condition (4) would
likely be satisfied because of a lack of anisotropy (8 = 1).
Assuming that such a dot has N ~ 10° nuclei and
Ye/v = 3, we find n ~ 10% > 1, i.e. the central spin
dynamics is well within the adiabatic regime. For such
conditions, the central correlator has to follow the corre-
lation pattern of the Overhauser field, as in Fig. 3(b).

Figure 5(a) shows our results for the real time corre-
lator for 8 =1 (electron-doped dots) and N = 700. The
case 7, = 3 corresponds to conditions (4). The first min-
imum of Cs(¢) in Fig. 5(a) is due to dephasing effects.
Note that it is not destroyed by Overhauser field fluctu-
ations, unlike the case with f = 0.2. At longer times,
C5(t) qualitatively follows the Overhauser field correla-
tion pattern, i.e. it decays to a small but non-zero value
during a time ~ 1/~,, followed by a long relaxation tail.
Figure 5(b) shows that a specific feature of the regime
(4), which distinguishes it from the case with . < |, is
the appearance of a shoulder in the low frequency peak of
the spin noise. An additional feature of the power spec-
trum at n > 1 is the presence of a second broad small
amplitude Gaussian peak at high frequencies.

In conclusion, we identified three regimes with distinct
central spin dynamics in the presence of QC at low tem-
peratures and weak external fields: (i) the regime of ex-
ponential relaxation of the spin correlator, which is de-
fined by Eq. (3); (ii) the regime with the central spin
following Overhauser field adiabatically, which is defined
by Eq. (4); and (iii) the regime of weak QC, 0 < 7. < 7,
which is qualitatively similar to 7. = 0. We showed that
hole-doped InGaAs dots [10] likely correspond to the ex-
ponential relaxation regime and that electron-doped dots
correspond to the regime (ii). Regime (iii) is potentially
applicable to electrostatically defined dots with a nearly
perfect atomic lattice.
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