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Experimentally measured velocities are used to obtain the one- and two-particle distribution
functions, f1 and f2 and the two-particle correlation function g2 ≡ f2 − f1f1. The fluctuating
velocities of interacting charged microparticles were recorded by tracking their motion while they
were immersed in a dusty plasma. The phase space was reduced by having only two particles in
a harmonic one dimensional (1D) confining potential. In statistical theory, g2 is usually said to
be dominated by the randomness of collisions, but here we find that it is dominated by collective
oscillatory modes.

PACS numbers: 52.27.Lw, 52.25.Dg, 05.20.Dd, 05.40.Jc

Interacting particles that are confined to one dimen-
sional (1D) motion, so that one particle cannot pass
another, are found in many systems. These include
optically-confined colloidal particles in an aqueous solu-
tion [1, 2], a chain of ions in a storage ring [3], Wigner
crystals consisting of electrons confined to quantum wires
[4], atoms on carbon nanotubes [5], microfluidic crystals
[6], ball bearings in channels [7], dusty plasmas [8, 9],
and single-channel ion flow across biological membranes
[10]. To be one dimensional, these systems require a con-
finement force so that one particle does not cross another
[11]. Some of these systems also have a thermal bath.

The combination of a confining force and a thermal
bath can lead to a battle between probabilistic and de-
terministic motion. In our experiment, there are two
microparticles. Their motion is partly probabilistic, i.e.,
stochastic, because they are immersed in a gas of many
atoms; and they are partly deterministic because they
are confined in an electrical potential well. The two mi-
croparticles are charged and interact with one another
through an electrical repulsion. As was pointed out by
van Zon and Cohen [12], in a colloid the greater mass of
a microparticle as compared to the molecules in the sur-
rounding liquid allows the many-particle problem to be
simplified; the effect of the molecules can be considered
as contributing only to friction and Brownian motion of
the microparticle, even when the microparticle also ex-
periences confining forces. The same simplifying princi-
ple applies to our experiment, with its microparticles im-
mersed in a partially ionized gas. In our experiment, we
will describe the battle of probabilistic and deterministic
motion using experimentally determined particle distri-
bution functions.

A many-particle system is described by an N -particle
distribution function fN in the statistical theory of gases
[13], liquids [14] and plasmas [15]. As it is used in the
Liouville equation [15], fN represents the probability per
unit volume of finding the system, at a given time, some-
where in the 6N dimension phase space defined by the po-
sitions and velocities of all N particles. A smaller phase
space can be used by averaging fN , as in the BBGKY

hierarchy [15, 16], yielding distribution functions, f1 and
f2 for one and two particles, respectively. Here f1(α)
is the probability per unit volume in 6D phase space of
finding any particle α at a specified position and veloc-
ity, while the two-particle distribution f2(α, β) is a joint
probability for particles α and β to be found at xα,vα

and xβ ,vβ . To describe the interactions of particles, for
example due to collisions, one invokes

f2(xα,vα,xβ ,vβ , t) = f1(xα,vα, t)f1(xβ ,vβ , t)

+ g2(xα,vα,xβ ,vβ , t), (1)

which is called a cluster expansion [14] or cumulant ex-
pansion [17]. Here, g2 is a correlation function that is
non-zero if the particles interact or zero if they move in-
dependently. Positive and negative values of g2 indicate
events that are more or less probable, respectively, than
is typical. For many-body systems including non-ideal
gases [13, 18], liquids [14], and weakly-coupled plasmas
[15], Eq. (1) is accompanied by cluster expansions for
higher-order distribution functions fN . (We note that
since strongly-coupled plasmas can behave like non-ideal
gases or liquids, it would be reasonable to use them in
that case as well.) For these many-body systems it is
generally necessary to make the approximation of trun-
cating the cluster expansion at some level [15], but in this
paper the experiment has only two microparticles, which
allows us to use Eq. (1) exactly without any truncation.
While f2 and g2 have prominent places in the theory

for statistical physics of gases and plasmas that are dense
enough that collisions are significant, they have seldom
been determined using velocities and measured in experi-

ments. In our search of the literature, we have not found
any previous determination of f2 and g2 in plasmas, or
any other physical system, using experimental velocity
data as we shall do in this Letter.
To measure f2 and g2, we designed an experiment that

allows direct observation of the particles in a reduced
phase space. We used two charged polymer microparti-
cles, which were restricted to move mainly in only one di-
mension, and were tracked using video microscopy. Mea-
suring the microparticle velocity and obtaining f2 and
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FIG. 1: (color online). (a) A side-view sketch of two mi-
croparticles, labeled α and β, in a harmonic confining poten-
tial. The microparticles move mainly along the x axis, and
they oscillate in the confining potential. (b) Sequence of top-
view images of the two microparticles [19] recorded by video
microscopy, showing their small displacements with time. (c)
The one-particle velocity distribution f1(α) for microparticle
α is presented as a histogram of velocity observations. It is
slightly non-Gaussian; the deviation from a Gaussian fit is
shown in (d) with an expanded scale.

g2 in this experiment allows us to observe not only the
probabilistic effects described by f2 and g2 in statisti-
cal theory, but also any coherent or deterministic motion
arising from correlations in the motion of the particles.
Probabilistic effects resembling Brownian motion are pro-
vided by the combination of collisions (with the large
number of gas atoms that filled an entire experimental
volume) and electrical fluctuations in the plasma. De-
terministic effects in the motion also occur, because the
two microparticles interact and are confined. In addition
to the microparticles and gas, the experimental system
included electrons and positive ions, which had a much
smaller number density than the neutral gas atoms.
Our mixture of micron-size particles of solid matter,

electrons, ions, and neutral gas atoms is called a dusty
plasma [20]. The microparticles collect electrons and ions
constantly, but in unequal number, so that they have a
negative charge equivalent to several thousand electrons
[21]. When the plasma is formed above a horizontal sur-
face, such as an electrode, a boundary region of a few
mm thickness is formed, which has a significant electric
field that is capable of levitating the microparticles. This
boundary region, called a sheath, conforms to the shape
of the surface beneath it. By shaping the surface, one can

confine clusters of a few particles [22–24]. The vertical
displacements of the microparticles are so small, due to a
strong vertical gradient of the sheath’s electric field, that
the motion is essentially limited to a horizontal plane.

In our experiment, the arrangement of microparticles
is reduced to being 1D. This was done by shaping the
sheath as shown in the Supplemental Material [19]. The
two particles aligned along x̂, with displacements that
were largest along the x axis but much smaller in the
other two directions, Fig. 1(a). A similar confinement
was used in [25]. To generate a weakly ionized plasma,
we applied 180 V peak-to-peak 13.56 MHz potentials
between the lower electrode and the grounded vacuum
chamber. Capacitive coupling was used so that a dc self-
bias of -77 V developed on the lower electrode. The
chamber was filled with argon gas at 13.5 mTorr pres-
sure and 301 K temperature. Using a Langmuir probe
located in the plasma near the particle location, the av-
erage electron energy was 2.4 eV with electron num-
ber density 2.8 × 1014 m−3. The microparticles were
4.81± 0.08 µm diameter and m = 8.93× 10−14 kg mass.
The microparticles, which had a time-averaged spacing of
r0 = 0.559±0.002 mm, experienced Epstein drag as they
moved through the neutral argon atoms, with a friction
coefficient of 2 s−1 [26]. The microparticles were imaged
from above at 100 frames/s, Fig. 1(a), and their posi-
tions and velocities were calculated as in [27]. Using a
straight-forward adaptation of the method of Sheridan et

al. [28] for 2D systems, we find Q/e = −(4260±170) and
κ = 2.11± 0.01, where κ ≡ r0/λD. Using the measured
value r0, we obtain λD = 0.302 ± 0.003 mm [29]. Crit-
ical experimental parameters, including the dc self-bias
and gas pressure, were verified to remain steady within
measurement uncertainties during the observations.

Our system of two confined particles can be described
by a phase space consisting of two positions and two ve-
locities, which can be further reduced by averaging the
distribution functions over position. This is suitable for
our experiment since the microparticles mainly oscillate
with small amplitudes about nearly fixed equilibrium po-
sitions (as can be seen in the video in the Supplemental
Material [19]). Thus, we will analyze motion in the 2D
subspace of vx,α and vx,β, which will allow us to more eas-
ily present results for f2 and g2 and use them to assess
the competition between probabilistic and deterministic
motion. In this reduced phase space, f1(vx,α)dvx,α is the
probability that particle α has a velocity in the range
vx,α < vα < vx,α + dvx,α, and f2(vx,α, vx,β)dvx,αdvx,b
is the joint probability that particles α and β have ve-
locities in the ranges vx,α < vα < vx,α + dvx,α and
vx,β < vβ < vx,β + dvx,β , respectively. The experimental
conditions are constant, so that the distributions f1 and
f2 are independent of time. In this reduced phase space,
Eq. (1) is

f2(vx,α, vx,β) = f1(vx,α)f1(vx,β) + g2(vx,α, vx,β). (2)
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We obtain the velocity distribution functions f1,
Fig. 1(b), as a histogram of observations of particle ve-
locities. The data shown in Fig. 1(b) were obtained by
binning all our measurements of the velocity of particle
α. The steady conditions of the experiment allow us to
use time averaging of data to serve as ensemble averag-
ing. In Fig. 2(b), we present the product f1(α)f1(β),
which appears in the cluster expansion Eq. (2). Unlike
f1(α) by itself, which is a function of only the veloc-
ity of particle α, the product f1(α)f1(β) is a function of
the velocities of both microparticles. This product would
represent the joint probability density if the two particles
were independent in their motions. Next we will consider
f2, which includes the effects of the correlation g2.
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FIG. 2: (color online). (a) The two-particle velocity distri-
bution function f2, (b) the product of the one-particle distri-
bution functions, and (c) the correlation function g2, calcu-
lated using Eq. (2). Contours of f1(α)f1(β) are more circular
than those of f2. Positive correlations are shown in red (the
color at the top of the color scale). (d) Alternate presenta-
tion of g2 shown normalized by f2. For example, if the value
of g2/f2 is 0.6 at a specific location in phase space vx,αvx,β,
then correlated dynamics account for 60% of the two-particle
distribution’s value.

Our main results, the two-particle velocity distribution
f2 and correlation function g2 in Figs. 2(a) and (c), re-
veal significant correlations. These correlations can be
detected in f2 by noting its non-circular contours, which
are unlike the more circular contours of f1(vx,α)f1(vx,β)
in Fig. 2(b). The correlations can be detected more
conspicuously in g2, which is calculated from f2 using
Eq. (2). We need a qualitative measure of the relative
contribution of correlations. For this purpose, we find

that the ratio g2/f2 is instructive, as shown in Fig. 2(d).
This ratio reveals that the correlations are most signif-
icant at velocities > 1.0 mm/s. It is striking that as
much as 50% or even more of f2 is accounted for by
the correlations at these higher velocities; for example
at vx,α = vx,β = 1.5 mm/s, g2 represents ≈ 60% of f2.
Correlations are in general the result of interactions

of nearby particles. In our experiment the microparti-
cles interact constantly, like neighboring atoms in a solid.
Since these interactions in a solid can sustain oscillations,
or even waves like sound waves, we are motivated to ex-
amine our correlations for signatures of oscillations.
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FIG. 3: (a) Labeling scheme for the quadrants of phase space
according to the two types of oscillatory motion. (b) The
frequency spectrum for the particle velocities, which is cal-
culated as the square of the fast Fourier transform of the
velocity time series for a particle. The frequency spectrum
has two peaks, at 2.0 and 3.7 Hz, which we will identify as
the center-of-mass and breathing modes, respectively.

With only two microparticles confined along a single
axis, our system can sustain two kinds of oscillations. In
the breathing mode, the two microparticles always move
oppositely: toward one another (due to the confinement)
and then away from one another (due to their mutual re-
pulsion) [23, 24]. In the center-of-mass or sloshing mode
[23, 24], the two microparticles move as one, oscillating
back and forth in the confining potential. In the pa-
rameter space vx,αvx,β that we use in Fig. 2, if only a
breathing mode is present, we would expect to observe
events in only quadrants II and IV, where the two veloc-
ities are always opposite, as shown in Fig. 3(a). On the
other hand, if only a center-of-mass mode is present, we
would expect events to be observed in quadrants I and
III, where the two velocities are in the same direction.
To examine our correlations for signatures of these two

modes, we will take advantage of their different frequen-
cies. In the frequency spectrum of the particle velocity,
Fig. 3(b), we see two distinct peaks, at 2.028 ± 0.002
and 3.712 ± 0.005 Hz, which indicate the two modes of
interest. Since most of the spectral power for velocity
is concentrated in these two peaks, we expect that ve-
locity correlations of two particles, as measured by g2,
will also be dominated by these two modes. To identify
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which peak corresponds to which mode, we apply a fre-
quency bandpass filter to the velocities time-series data,
as shown in the Supplemental Material [19]. We then re-
calculate f1, f2 and g2. The results, for bandpasses that
are centered on the two peaks, are shown in Fig. 4.
Figure 4 reveals features in the correlation g2 that are

distinctly different for the low and high-frequency band-
passes. For the low-frequency bandpass centered at 2.0
Hz, correlations are most positive in quadrants I and III,
but for the high-frequency bandpass at 3.7 Hz they are
most positive in quadrants II and IV. Recall that events
associated with the center-of-mass mode are expected in
quadrants I and III, leading us to identify the 2 Hz mode
as the center-of mass mode. Likewise, we identify the 3.7
Hz mode as the breathing mode [30].
We find that the correlation g2 is dominated not by

randomness, but by motion associated with two modes.
This result is contrary to the usual expectation in sta-
tistical theory for gases [13] and plasmas [15, 16]. If the
motion had no deterministic character, we would expect
g2 in Fig. 2(c) to lack a distinct pattern. However, g2 does
have a distinct pattern. Moreover, after frequency filter-
ing and then recomputing g2 in Fig. 4, we find even more
distinctive patterns in g2 that are clearly attributable to
the two modes: center-of-mass and breathing [31]. Thus,
as a measure of the battle between deterministic and ran-
dom motion, g2 is dominated by the kind of modes that
are most often thought of as deterministic [32].
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FIG. 4: (color online). Two-particle correlation function g2
recalculated using frequency-filtered velocity time-series data.
Different frequency bandpasses were chosen for (a) and (b) to
correspond to the two peaks in the spectrum of Fig. 3(b).
Features in g2 are distinctly different for (a) and (b), which
indicates that g2 is dominated by the collective effects of two
kinds of oscillations. To help distinguish the type of oscil-
lations, the four quadrants I-IV are labeled as in Fig. 3(a).
Comparing (a) and (b) to the labels in Fig. 3(a), we find that
correlations arising from oscillatory motion at ≈ 2.0 Hz in (a)
correspond to the center-of-mass motion, while correlations
at ≈ 3.7 Hz in (b) correspond to the breathing mode.

In conclusion, we have used experimental data to ob-
tain the two-particle distribution f2 and calculate the
correlation function g2 using Eq. (2). For our dusty
plasma, we find that g2 has distinctive signatures of os-

cillatory modes. The experiment was designed so that
two charged microparticles were immersed in a partially
ionized gas with confinement to limit their motion to 1D,
i.e., along a single axis without passing one another. Be-
cause of their charges, the two particles interacted con-
stantly, and due to the confinement they had two oscilla-
tory modes corresponding to center-of-mass and breath-
ing motion. We find that the frequency spectrum for g2
has distinctive signatures of the two oscillatory modes.
Although the statistical theory of gases and plasmas of-
ten considers g2 as an indicator of probabilistic effects
associated with dissipation and collisions, in this experi-
ment we find that g2 is dominated by collective effects.
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