

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Observation of the Deexcitation of the ^{229m}Th Nuclear Isomer

Xinxin Zhao, Yenny Natali Martinez de Escobar, Robert Rundberg, Evelyn M. Bond, Allen Moody, and David J. Vieira

Phys. Rev. Lett. 109, 160801 — Published 18 October 2012

DOI: 10.1103/PhysRevLett.109.160801

Observation of the de-excitation of ^{229m}Th nuclear isomer

Xinxin Zhao, Yenny Natali Martinez de Escobar, Robert Rundberg, Evelyn M. Bond, Allen Moody, and David J. Vieira Los Alamos National Laboratory, Los Alamos, NM 87545, USA

The ²²⁹Th nucleus possesses the lowest-energy nuclear isomeric state. Two widely accepted indirect measurements of the transition energy place it within reach of existing laser capabilities. Direct searches for the isomer de-excitation have proven elusive despite extensive effort over the past couple of decades. There is now a growing interest in finding this unique transition because of its potential applications in nuclear, atomic, condensed matter and optical physics, quantum information, metrology and cosmology, including the development of a new type of clock based on this nuclear transition. In this work we report the first direct observation of the de-excitation of the lowest-lying isomeric state in ²²⁹Th. By collecting ²²⁹Th recoils following the alpha decay of ²³³U into MgF₂ plates and measuring the subsequent light emission, we have isolated the isomer de-excitation and measured the transition's half-life to be 6±1 hours. Through comparison measurements with ^{235m}U isomer, we found that the observed ^{229m}Th de-excitation signal originates from photon emission rather than internal conversion (IC) electron emission. This discovery lays the ground work for optical and laser spectroscopy of ^{229m}Th nuclear isomer and the development of a ²²⁹Th nuclear clock.

PACS numbers: 06.30.Ft, 21.10.Tg, 23.20.Lv, 27.90.+b

The existence of an extremely low-lying nuclear state in ²²⁹Th has been deduced from nuclear spectroscopy since the 1970's [1]. Early studies [2] indirectly determined the energy of the nuclear isomeric state in ²²⁹Th to be 3.5 ± 1.0 eV, and suggested that such a nuclear state could be excited with lasers. Since then several direct searches have failed to find the isomer deexcitation [3-6]. Recently, researchers performed an improved indirect measurement [7, 8] and placed the isomer energy at 7.8±0.5 eV with an estimated half-life $t_{1/2}$ of 5 hours for the γ deexcitation channel based on energy scaling of a known M1 transition involving the same Nilsson levels in ²³³U.

A direct observation of the ^{229m}Th γ de-excitation would open up many exciting possibilities in fundamental and applied research, including the development of a "nuclear" clock [9-13]. The inferred transition wavelength (160±10 nm) from the most recent measurement [8] is within the range of high harmonic lasers [14-16], making laser spectroscopy of the nuclear isomer possible. Moreover, a ^{229m}Th nuclear clock is estimated to have a quality factor of Q = $f/\Delta f \sim 10^{20}$, and be inherently more robust than atomic transitions with respect to variations in the environment. In addition, similar to testing the temporal variation of the fine structure constant using atomic transitions [17], the ^{229m}Th isomeric transition could probe the relative temporal variation of the electromagnetic and strong interactions [18] which unification theories predicted to exist in an expanding Universe [19]. This letter describes the direct observation of the ^{229m}Th nuclear isomer de-excitation.

²³³U ($t_{1/2} = 1.592 \text{ x } 10^5 \text{ yr}$) undergoes alpha (α) decay, resulting in ²²⁹Th ($t_{1/2} = 7400 \text{ yr}$) recoils with a maximum energy of 83 keV and $\sim 2\%$ branching to the ^{229m}Th isomeric state. Fig. (1a) illustrates the relevant energy levels and decay mechanisms for the isomer transition. We collect ²²⁹Th α -recoils from eight ²³³U source plates on a set of four MgF₂ plates (2 cm x 2cm x 1 mm from Almaz Optics) as depicted in Fig. (1b). The ²³³UO₂ samples were electroplated [20] onto gold plated stainless steel plates. Each sample is 2 cm in diameter and nearly transparent. SRIM calculations show that 83 keV ²²⁹Th recoils travel about 15 nm (or an areal thickness of 17μ g/cm²) in uranium oxide (UO₂) which sets an optimal total ²³³U activity at ~4.5 µCi for our After a suitable collection period, we move the MgF₂ plates close to a experiment. photomultiplier tube (~ 3 mm away from the PMT window) and measure the light emission as a function of time. We used two PMTs (Hamamatsu R8487 and R8486) to search for the isomer emission and to determine its spectral range. The PMT are cooled to 10.0±0.2 °C and their quantum efficiencies are shown in Fig. (1c). For a 25 cm² total surface area of 4.5 μ Ci UO₂, we estimated a ^{229m}Th implantation rate of ~1000 isomers/s and PMT signal on the order of 1 Hz if the isomer de-excites through a photon emission. We assumed 25% recoil implantation efficiency, 1% optical coupling to the PMT sensor (~1.7 cm away from the PMT window), and 10% PMT QE. The system is enclosed in a vacuum chamber ($\sim 2x10^{-7}$ Torr) to eliminate air ionization and optimize vacuum ultra-violet (VUV) light detection. Our ²³³U sources also contain 8 ppm of 232 U ($t_{1/2}$ = 69.8 yr) which decays to 228 Th ($t_{1/2}$ = 1.9 yr).

FIG. 1. ²²⁹Th nuclear energy levels and experimental details. (a) Ground state and lowest isomeric state of ²²⁹Th showing the two possible decay channels for the isomer: γ -decay and

internal conversion (IC) electron emission. (**b**) Schematic of experimental setup used to measure the γ -decay of the ^{229m}Th isomer: ²²⁹Th recoils from ²³³U α -decay are implanted into MgF₂ plates for several hours. The ²³³U sources are then removed and the light emission is measured with a PMT. (**c**) Quantum efficiencies (as provided by the manufacturer) for Hamamatsu PMTs R8487 and R8486.

Several processes emit light after recoil implantation into the MgF₂ plates from the 233 U source: (1) MgF₂ phosphorescence after alpha and beta radiation exposure [21]; (2) MgF₂ scintillation from the radioactive decay of implanted ^{228, 229}Th and their daughters; (3) fast decaying atomic fluorescence associated with the recoil implantation; and (4) 229m Th γ -ray emission, if it exists. Earlier work on MgF₂ phosphorescence after beta (β) radiation exposure [21] demonstrated that it consists of a broad emission spectrum, with the shortest wavelength band peaking near 225 nm. We therefore used PMT R8487 to search for the isomer emission while minimizing the phosphorescence background. MgF₂ light emission was first measured after collecting recoils from a ²³²U source in order to study non-isomeric processes. The ²³²U source has an activity of 3.6 µCi and 99% of its decay daughters were chemically removed beforehand. Fig. 2 shows the MgF₂ emission (red dots) measured after implanting recoils from the ²³²U source for 80 minutes. The emission rises initially and subsequently evolves into a double exponential decay with the half-lives of ²¹²Pb ($t_{1/2} = 10.64$ hr) and ²²⁴Ra ($t_{1/2} = 3.63$ day). The initial rise indicates that the light emission results from Cherenkov radiation produced by high-energy β particles (2.25 MeV) from ²¹²Bi ($t_{1/2} = 1.009$ hr) decay. ²¹²Bi does not implant efficiently but grows-in from implanted ²¹²Pb and eventually reaches secular equilibrium [22] with the 212 Pb and 224 Ra present in the MgF₂.

To eliminate the scintillation fluorescence associated with $^{232, 233}$ U decay daughters when searching for the 229 Th isomer, we used a 4.5 µCi 233 U source (also containing 8 ppm of atomic 232 U) that was chemically purified to remove more than 99.99% of the U daughters. The uranium source was alpha counted right after the chemical purification to determine the activities of the daughters. The residue activities of the daughters (<0.2 nCi) come from the 232 U decay chain with negligible amount (non-detectable) from the 233 U decay daughters due to the long half-life of 229 Th. We found no measurable emission signal after a recoil implantation time of 80 minutes (as shown in green dots in Fig. 2). An emission signal of ~50 mHz with a decay time constant consistent with the 60 hr phosphorescence component [21] was observed only until the

collection period was increased to 31 hr. We therefore conclude that there is no isomer emission between 115-160 nm (see Fig. 1c).

FIG. 2. Results with R8487 PMT. Emission decay curve measured after an 80 minute collection period (red dots) and the fit (blue line) using a ²³²U source. The data fits well to the function: $f(t) = A_0 + A_{Pb} (e^{-t/\tau_{Pb}} - 0.684 e^{-t/\tau_{Bi}}) + A_{Ra} e^{-t/\tau_{Ra}}$, where the lifetimes ($\tau = t_{1/2}$ /ln2) of all radio nuclides are held fixed, and the amplitude ratio of ²¹²Bi to ²¹²Pb was calculated from the implantation time t_i using a derived formula [22]: $-\frac{\tau_{Bi}}{\tau_{Pb}}(\frac{1-e^{-t_i/\tau_{Bi}}}{1-e^{-t_i/\tau_{Pb}}})$. Emission measured after 80 minute (green dots) collection period using a chemically purified ²³³U source. The data shows no ²²⁹Th isomer emission detected with PMT R8487.

We then proceeded with measurements using PMT R8486. To effectively eliminate scintillation fluorescence and study phosphorescence more carefully, we block the low-energy recoil ions (~50 nm path length) by covering the ²³³U source with aluminized Mylar foil (2.2 μ m thick) during an implantation period. Comparing phosphorescence measurements performed with single and double layers of Mylar foil established that a scaling factor of 1.15±0.01 compensated for single layer Mylar foil attenuation. By measuring the phosphorescence before and after each successive recoil ion implantation, we found that the phosphorescence efficiency of MgF₂ increased with thorium doping but the enhancement rate is reduced after ~10 hours of ²²⁹Th exposure. We therefore pre-exposed the MgF₂ plates for ~10 hours to a ²³³U source before undertaking isomer search measurements as discussed below. Small temperature modulations of the phosphorescence were controlled by stabilizing the vacuum chamber temperature.

We then searched for the ^{229m}Th isomer emission with a series of 3.5 hr implantation

measurements using a chemically-purified 4.2 µCi ²³³U source. The phosphorescence background with Mylar-covered ²³³U source was measured before and after each ion implantation period with judicious care taken to match the experimental conditions, i.e. position and temperature of the uranium and MgF₂ plates. A set of three measurements are shown in Fig. (3a), where emission after ²²⁹Th implantation is shown in red crosses and the phosphorescence measured given as blue and green dots. Since the increase in phosphorescence after each thorium implantation was small, we averaged the two background measurements after attenuation scaling to establish the phosphorescence background. After subtracting off this background, we obtained the net signal associated with the implanted recoil ions as shown in black dots in the Fig. (3a). We fit the data to an exponential function to obtain its amplitude and half-life. Repeating these measurements revealed that the net signal increased with the age of the ²³³U source because of the in-growth of ²³²U decays daughters, as shown in Fig. 3b. The data shows that the net amplitude increases at a rate of 1.2 ± 0.4 mHz per day and has an initial amplitude of 228±22 mHz when extrapolated to zero in-growth time. The half-life of the net signal, also increases slowly with the age of ²³³U source because of the increasing contributions from ²¹²Pb and ²²⁴Ra, has an extrapolated value of 6±1 hr at zero in-growth time (shown in Fig. 3c). Measurements using several different ²³³U sources show that the net signal amplitude at zero in-growth time depends on the thickness and uniformity of the ²³³U sources. The purity of every sample was checked after chemical purification using α -spectroscopy analysis to rule out the contribution of daughters. It was critical to prepare a thin and uniform source for good recoil collection efficiency

The net signal at zero in-growth time has three possible origins: emission of the isomer γ ray, MgF₂ scintillation from emitted isomer IC electrons, and MgF₂ phosphorescence associated with recoil implantation. To investigate the contributions of the latter two processes, we made MgF₂ emission measurements using a 4.9 μ Ci ²³⁹Pu source in the same setup. ²³⁹Pu α -decays (5.1 MeV in energy, $t_{1/2}$ =2.41x10⁴ yr) with a ~100% branching ratio to the ^{235m}U isomer (E^{*}=65 eV), which de-excites entirely through IC electron emission with a half-life of ~26 minutes [23]. Phosphorescence emission of similar decay profile to that present with the ²³³U source was observed, but no net optical signal was detected after a 3.5 hr implantation period, as shown in Fig. (3d). We therefore conclude that the observed ²²⁹Th implantation signal is from ^{229m}Th γ ray emission. Combined with the null PMT R8487 measurement, we conclude that the emission wavelength is at least longer than 160 nm. For this ultra-violet γ -ray emission, it is possible that the lifetime and the signal amplitude could be changed by the "super-radiance" effect [24].

FIG. 3. Evidences of ^{229m}Th γ -ray emission. (a) Emission decay curves measured with PMT R8486 after a 3.5 hour collection period using a 4.2 μ Ci ²³³U source (red crosses) and with Mylar foils used as a recoil filter (blue and green dots are phosphorescence data before and after ion implantation, respectively). The PMT signal difference (with the phosphorescence amplitude scaled by 1.15 and then subtracted out) is shown in the inset as black data points. (b) Signal amplitude (red) for 3.5 hour implantation period and ²²⁸Th activity in the ²³³U source (blue line) as a function of source age. (c) Signal half-life as a function of source age; linear fit to zero source age yields a half-life of 6±1 hours. (d) The averaged PMT signal difference for two 3.5 hour recoil ion implantation measurements using a 4.9 μ Ci ²³⁹Pu source (red dots) and the temperature difference for this measurement (black line). The solid red line is an exponential fit with an amplitude of 18±20 mHz using a fixed 6 hour half-life. For a fixed 26 minute half-life, the fit amplitude is -74±50 mHz.

With the direct observation of the ^{229m}Th de-excitation and evidence that it is a photon emission, we expect exciting advances in optical and laser spectroscopy of ^{229m}Th nuclei and the development of a ²²⁹Th nuclear clock.

We thank Anna Hayes, Carol Burns, Todd Bredweg, William Priedhorsky, and Marianne Wilkerson for discussions and support, Alice Slemmons for help on ²³³U sample preparation, Stosh A. Kozimor and Kevin Boland for preparing ²³²U solution, Donald Dry for alpha-spectroscopy analysis of U and Pu sources. We thank Justin Torgerson and Richard Greco for their effort to measure MgF₂ phosphorescence in a separate ion beam setup. The work is supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Agency (NNSA) as part of the U.S. Department of Energy under contract No. DE-AC52-06NA25396.

- [1] L. A. Kroger, C. W. Reich, Nucl. Phys. A 259, 29-60 (1976).
- [2] R. G. Helmer, C. W. Reich, Phys. Rev. C 49, 1845-1858 (1994).
- [3] G. M. Irwin, K. H. Kim, Phys. Rev. Lett. 79, 990-993 (1997).
- [4] D. S. Richardson et al., Phys. Rev. Lett. 80, 3206-3208 (1998).
- [5] S. B. Utter et al., Phys. Rev. Lett. 82, 505-508 (1999).
- [6] R. W. Shaw et al., Phys. Rev. Lett. 82, 1109-1111 (1999).
- [7] B. R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007).
- [8] B. R. Beck et al., Proc. of the 12th Inter. Conf. on Nucl. Reaction Mechanisms, Varenna, Italy.
- Cerutti, F. & Ferrari, A., ed. Vol. 1, 255-258 (2010).
- [9] E. Peik, C. Tamm, Europhys. Lett. 61, 181-186 (2003).
- [10] C. J. Campbell et al., Phys. Rev. Lett. 102, 233004 (2009).
- [11] W. G. Rellergert et al., Phys. Rev. Lett. 104, 200802(2010).
- [12] C. J. Campbell, A. G. Radnaev, and A. Kuzmich, Phys. Rev. Lett. 106, 223001 (2011).
- [13] C. J. Campbell et al., Phys. Rev. Lett. 108, 120802 (2012).
- [14] T. Kanai et al., J. Opt. Soc. Am. B 21, 370-375 (2004).

- [15] R. J. Jones et al., Phys. Rev. Lett. 94, 193201 (2005).
- [16] C. Gohle et al., Nature 436, 234-237 (2005).
- [17] T. Rosenband et al., Science 319, 1808-1812 (2008).
- [18] V. V. Flambaum, R. B. Wiringa, Phys. Rev. C 79, 034302 (2009).
- [19] J. P. Uzan, Rev. Mod. Phys. 75, 403-455 (2003).
- [20] E. M. Bond et al., Nucl. Chem. 276, 549 (2008).
- [21] W. Viehmann et al., Applied Optics 14, 2104-2115 (1975).
- [22] G. Friedlander et al., Nuclear Radiochemistry, ISBN 0-471-28021-6, pg. 200 (1981).
- [23] J. R. Huizenga, C. L. Rao, C, and D. W. Engelkemeir, Phys. Rev. 107, 319-320 (1957).
- [24] R. H. Dicke, Phys. Rev. 93, 99-110 (1954).