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We provide quantitative bounds on the characterisation of multiparticle separable states by states
that have locally symmetric extensions. The bounds are derived from two-particle bounds and relate
to recent studies on quantum versions of de Finetti’s theorem. We discuss algorithmic applications
of our results, in particular a quasipolynomial-time algorithm to decide whether a multiparticle
quantum state is separable or entangled (for constant number of particles and constant error in the
one-way LOCC or Frobenius norms). Our results provide a theoretical justification for the use of
the Search for Symmetric Extensions as a test for multiparticle entanglement.

Entanglement between two particles is a fundamental resource in quantum communication theory, being of vital
importance in quantum teleportation [1], quantum key distribution [2, 3] as well as more exotic tasks such as the
simulation of noisy channels by noiseless ones [4, 5]. The most famous criterion to decide whether or not a state is
entangled is the Peres-Horodecki test [6, 7]: it is based on the observation that the partial transpose of a separable state
is positive semi-definite and hence, if the partial transpose of a quantum state ρAB is not positive semi-definite, then
ρAB must be entangled. Unfortunately, this criterion is only complete for two-by-two and two-by-three dimensional
systems [8].

A hierarchy of separability criteria that detects every entangled state is the Search for Symmetric Extensions [9].
This hierarchy is based on the observation that if ρAB is separable, i.e. of the form

∑
i pi|φi〉〈φi|A ⊗ |ψi〉〈ψi|B , then

for every k, we can define the state
∑
i pi|φi〉〈φi|

⊗k
A ⊗ |ψi〉〈ψi|B which is manifestly symmetric under the permutation

of the A systems and extends the original state ρAB [35]. Hence if for some k a given state ρAB does not have an
extension to k copies of A that is symmetric under interchange of the copies of A, then it must be entangled. The k’th
separability criterion is thus the search for a symmetric extension to k copies of A. Quantum versions of the famous
de Finetti theorem from statistics show that this hierarchy of criteria is complete [10–14] — i.e. every entangled state
fails to have a symmetric extension for some k — and even provide quantitative bounds for the distance to the set
of separable states measured in the trace norm [15, 16] (see Figure 2). Interestingly, these bounds can be improved
if we add the Peres-Horodecki test as has been shown in [17, 18] following a proposal to use the search for such
extensions by semidefinite programming as a test to detect bipartite entanglement [9]. Whereas the algorithm works
well in practice, from the bounds one can only infer a runtime exponential in the dimension the state, suggestively in
agreement with the well-known result that the separability problem is NP-hard [19, 20].

In recent work and together with Jon Yard, we have shown that the algorithm runs in quasipolynomial time (even
without the Peres-Horodecki test) for constant error when one is willing to consider the weaker one-way LOCC
norm [21, 22] [36]. The one-way LOCC norm is an operationally defined norm giving the optimal probability of
distinguishing two two-particle states by local operations and one-way classical communication. Locality restricted
norms, such as the one considered here, may actually be regarded the more relevant norms in the distant laboratories
paradigm, where Alice and Bob each hold part of a state and are restricted in their communication: a state that
has a small distance to the set of separable states in such a norm, namely, will behave just like a separable state.
This observation leads to a number of unexpected consequences of our results ranging from quantum data hiding to
quantum complexity theory. From a feature of locality restricted norm it further follows that the algorithm remains
fast if the Frobenius norm is considered instead. This provides a geometric interpretation of the results since the
Frobenius norm is just the Euclidean norm when considering quantum states as elements in a real vector space.

Following their work in the two-particle case, Doherty et al. proposed a similar search for extensions in order to
detect multiparticle entanglement [23]. With this Letter we provide a quantitative analysis of this proposal and
prove that this hierarchy provides a family of necessary and sufficient conditions for multiparticle entanglement [37].
We do this by deriving a bound on the distance between multiparticle states that have symmetric extensions and
multiparticle separable states in terms of the corresponding two-particle bounds (Theorem 1). We illustrate the result
by considering the best known two-particle bounds (Corollary 1). As in the two-particle case, the one-way LOCC (and
the Frobenius norm) result is shown to imply a quasipolynomial-time algorithm for the detection of entanglement for
a constant number of parties and for constant error (Corollary 2). The use of the Search for Symmetric Extensions
as multiparticle entanglement criteria has therefore been given a theoretical underpinning. We also show how our
results can lead to a novel quantum version de Finetti’s theorem in the one-way LOCC norm that depends only
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||ρ− σ||LOCC→ equals the maximal bias of correctly distinguishing ρ from σ by one-way LOCC, i.e.by a protocol that

first measures A1, then, depending on the outcome, measures A2, and so on until AN has been measured, and that then makes
a guess as to which state has been prepared. Classical information is indicated by double lines. Whereas restricting to one-way
LOCC measurements in general reduces the power to distinguish quantum states [24–26], we remark that such measurements
are still powerful enough to distinguish any two orthogonal pure states [27, 28].

logarithmically on the local dimension (Corollary 3). This stands in sharp contrast to the trace norm case, where the
dependence on the local dimension is at least linear [16].

Symmetric Extensions. We denote by A1, A2, · · · Hilbert spaces of finite but possibly different dimension |Ai|
and let SA1:A2:···:AN

:= conv{|φ1〉〈φ1|A1
⊗ |φ2〉〈φ2|A2

· · · ⊗ |φN 〉〈φN |AN
} be the set of separable states, where conv

denotes the convex hull. We also define the convex sets of symmetrically extendible states Ek1,k2,···kNA1:A2:···:AN
consisting of

all ρA1A2···AN
for which there is a state ρSk1 (A1)Sk2 (A2)···SkN (AN ) with

ρA1A2···AN
= tr

A
k1−1
1 A

k2−1
2 ···AkN−1

N

ρSk1 (A1)Sk2 (A2)···SkN (AN ).

Here, Sk(A) denotes the symmetric subspace of Ak ≡ A⊗k and trAk−1 stands for the partial trace of all but one of
the A systems [38].

In order to measure distances between quantum states we consider a norm || ∗ || that is defined for all spaces of
linear operators L(A1 ⊗ · · · ⊗AN ) and that may depend on the decomposition into tensor factors (here indicated by
colons) satisfying the following compatibility conditions: For all finite dimensional A1, A2, · · · , AN , A′1, A′2, · · · , A′N
and for all completely positive trace preserving maps Λi : L(Ai)→ L(A′i) we have

||Λ1 ⊗ Λ2 ⊗ · · · ⊗ ΛN (∗)||A′1:A′2:···:A′N

≤ || ∗ ||A1:A2:···:AN
. (1)

and

|| ∗ ||A1···Aj :Aj+1···AN
≤ || ∗ ||A1:···:Aj :Aj+1:···:AN

. (2)

An example of a norm which satisfies the two conditions is the trace norm which can be written in the form

‖X‖1 = sup
0≤M≤1

tr((2M − 1)X).

Note that it is independent of the split of the total Hilbert space into tensor products. A second norm satisfying the
conditions is the one-way LOCC norm, defined in analogy with the trace norm as

‖X‖LOCC→(A1:···:AN ) := sup
M∈LOCC→(A1:···:AN )

tr((2M − 1)X),

where LOCC→(A1 : A : 2 : · · · : AN ) is the convex set of matrices 0 ≤ M ≤ 1 such that there is a two-outcome
measurement {M,1−M} that can be realized by one-way LOCC from A1 to A2 to A3 and so on until AN (see Figure
1). Note that the one-way LOCC norm does depend on the tensor product split.

We say that δ ≡ δ(|A|, |B|, k) is a two-particle bound for a norm || ∗ || if for all ρAB ∈ Ek,1A:B there exists σ ∈ SA:B

with (see Figure 2)

||ρ− σ||A:B ≤ δ(|A|, |B|, k).

Note that δ(|A|, |B|, k) does not equal δ(|B|, |A|, k) in general. In fact, all known bounds either depend only on |A|
or only on |B|, the dimensions of A and B, respectively.
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Multiparticle Entanglement. We derive two results that quantify the closeness of a separable state to a sym-
metrically extendible multiparticle state in terms of two-particle bounds. The first result is tailored to a two-particle
bound that only depends on |A|; the second depends only on |B|. We disregard nonappearing dimensions by setting
them to infinity.

Theorem 1. Let || ∗ || be a norm that satisfies (1) and (2), assume that δ(|A|, |B|, k) is a two-particle bound for || ∗ ||
and let ρ ∈ Ek1,k2,...,kNA1:A2:···:AN

. Then there exists σ ∈ SA1:A2:···:AN
with

||ρ− σ||A1:A2:···:AN
≤
N−1∑
i=1

δ (|Ai|,∞, ki) .

Furthermore there exists σ ∈ SA1:A2:···:AN
with

||ρ− σ||A1:A2:···:AN
≤
N−1∑
i=1

δ (∞, |Ai+1|, `i) ,

in the case where (k1, k2, · · · kN−1, 1) := (`1`2 · · · `N−1, `2`3 · · · `N−1, · · · , `N−1, 1).

Proof. By assumption there exists an extension ρSk1 (A1)Sk2 (A2)···SkN (AN ) of ρA1A2···AN
. Since clearly

ρA1Sk2 (A2)···SkN (AN ) ∈ E
k1,1

A1:Sk2 (A2)···SkN (AN )
there exists a state σA1Sk2 (A2)···SkN (AN ) of the form

σA1Sk2 (A2)···SkN (AN ) =
∑
i1

pi1χ
i1
A1
⊗ ρi1

Sk2 (A2)···SkN (AN )

such that

||ρ− σ||A1:Sk2 (A2)···SkN (AN ) ≤ δ(|A1|,∞, k1).

We now apply the same reasoning to each of the ρi1
Sk2 (A2)···SkN (AN )

and find that there are states

σi1
A2Sk3 (A3)···SkN (AN )

=
∑
i2

pi2|i1χ
i1i2
A2
⊗ ρi1i2

Sk3 (A3)···SkN (AN )

satisfying

||ρi1 − σi1 ||A2:Sk3 (A3)···SkN (AN ) ≤ δ(|A2|,∞, k2).

We continue this way until

||ρi1i2···iN−2 − σi1i2···iN−2 ||AN−1:SkN (AN )

≤ δ(|AN−1|,∞, kN−1)

for

σ
i1i2···iN−2

AN−1SkN (AN )
=
∑
iN−1

piN−1|i1i2···iN−2

× χi1i2···iN−1

AN−1
⊗ ρi1i2···iN−1

SkN (AN )
.

We now tensor χi1A1
⊗ χi1i2A2

⊗ · · · ⊗ χ
i1i2···ij
Aj

to ρ
i1···ij
Aj+1···AN

and denote the state resulting from taking the convex

combination with the distribution pi1···ij+1
:= pi1pi2|i1 · · · pij |i1···ij−1

by τ j . By the above bounds, the monotonicity
under CPTP maps and the triangle inequality we find (for 0 ≤ j ≤ N − 2 where τ0 := ρ)

||τ j − τ j+1||A1···Aj+1:Aj+2···AN
≤ δ(|Aj+1|,∞, kj) (3)

Then we convert all the bounds into the norm || ∗ ||A1:A2:···:AN
using (2). Finally, we use the triangle inequality in the

telescope estimate

||τ0 − τN−1||A1:A2:···:AN
≤
N−2∑
j=0

||τ j − τ j+1||A1:A2:···:AN
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FIG. 2: Illustration of the hierarchy for two particles

which together with (3) proves the first bound since τN−1 is fully separable.
For the second bound note that by assumption there exists an extension ρSk1 (A1)Sk1 (A2)···SkN−1 (AN−1)AN

of

ρA1A2···AN
. Since clearly ρBN−1AN

∈ E`N−1,1
BN−1AN

, where

BN−1 := Sk1/`N−1(A1)Sk2/`N−1(A2)

· · · SkN−2/`N−1(AN−2)AN−1,

there exists a state

σBN−1AN
=
∑
iN−1

piN−1
ρ
iN−1

BN−1
⊗ σiN−1

AN

satisfying

||ρ− σ||BN−1:AN
≤ δ(∞, |AN |, `N−1).

We then repeat the same argument for the states ρ
iN−1

BN−1
thereby decoupling system AN−1 from

BN−2 :=Sk1/(`N−2`N−1)(A1)Sk2/(`N−2`N−1)(A2)

· · · SkN−3/(`N−2`N−1)(AN−3)AN−2.

We continue this way until we have decoupled A2 from B1 := A1. We then combine all the estimates as we had done
in the first proof and obtain the claim.

The following corollary is obtained by inserting the trace norm quantum de Finetti theorem from [16, Theorem II.8’]
into the first bound and by inserting the one-way LOCC norm bound from [21] into the second bound of Theorem 1.

Corollary 1. For all ρ ∈ Ek1,...,kNA1:A2:···:AN
there exists σ ∈ SA1:A2:···:AN

with

||ρ− σ||1 ≤ 4

N−1∑
i=1

|Ai|
ki

.

Furthermore, for all ρ ∈ Ek1,...,kNA1:A2:···:AN
there exists σ ∈ SA1:A2:···:AN

with

||ρ− σ||LOCC→(A1:A2:···:AN ) ≤
1

8 ln 2

N−1∑
i=1

√
log |Ai|
`i

.
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Note that we recover the first part of the statement [9, Theorem 1] when we let all ki approach infinity. Examples
of extendible states that saturate the two particle bounds used here can be found in [29] and [21], respectively. By
carefully going through the proof of Theorem 1 one can check that by demanding ρ to satisfy the Peres-Horodecki

test, the first bound improves to O
(∑N−1

i=1
|Ai|2
k2i

)
as [17, 18] can be applied. Similarly one can check that (up to a

loss of 1√
153

) the second bound holds for the Frobenius norm due to [30], even though the Frobenius norm violates

(1).
Whereas the first result on the trace norm may provide a useful characterisation of multiparticle separable states

that is applicable in a wide variety of situations, the second result on the one-way LOCC norm is more specific, but
features an interesting exponential improvement with respect to the dimension-dependence. In particular, we will now
show that the one-way LOCC norm result implies that detecting multiparticle separability is much more efficient than
what was previously anticipated. For this we set `i := 1

(8 ln 2)2 (N − 1)2ε−2 log |Ai+1|. Then we search for an extension

to
⊗

i Ski(Ai) with a semi-definite programme. If we find the extension, then we output ”separable”, if not, we output
”entangled”. This algorithm solves the weak membership problem for separability with error ε correctly, since by
Corollary 1 the one-way LOCC norm distance is bounded by ε for extendible states. Since every separable state has
arbitrary extensions, an output ”entangled” will always be correct. The runtime equals a polynomial in the number of
variables, which is smaller than |AN ||AN−1|`N−1 · · · |A1|`1`2···`N−1 = exp(O((N − 1)2N−1ε2(N−1)

∏N
i=1 log |Ai|)) since

|Sk(A)| ≤ |A|k; the latter is a good bound for large |A|, a regime in which we are interested. Since a similar conclusion
is true for the Frobenius norm, we obtain the following corollary.

Corollary 2. Deciding separability up to error ε, in one-way LOCC or Frobenius norm can be done in time
exp(O(ε−2(N−1)N2N−1

∏N
i=1 log |Ai|)), i.e. in quasipolynomial-time for constant error and a constant number of par-

ties.

Quantum de Finetti Theorem. A quantum de Finetti theorem is a statement about the approximation of a
permutation-invariant state ρAk , i.e. [Uπ, ρAk ] = 0 ∀π ∈ Sk, by convex combinations of identical tensor products
σ⊗k, so-called de Finetti states [10, 12, 14–16, 31]. Apart from their appeal as remarkable quantum analogues of de
Finetti’s theorem for exchangeable random variables, quantum de Finetti theorems are important tools in the context
of mean-field theory [12], quantum cryptography [31] and complexity theory [32].

Quantum de Finetti theorems have previously been proven for the trace norm, where the best bounds are quadratic
in the local dimension. There also is a linear lower bound on the dimension-dependence [16] which marks an important
difference with classical range-independent de Finetti theorems due to Diaconis and Freedman [33]. Since in many
applications the dimension-dependence is a crucial bottleneck in the applicability of quantum de Finetti theorems, it
could be very interesting if one could beat the linear bound by using a weaker norm. Corollary 1 suggests that the
one-way LOCC norm may allow for a logarithmic dimension-dependence and it is this result, which we will explain in
the following. For this, let ρ(AĀ)k be a state supported on the symmetric subspace Sk(AĀ) that extends ρAk (Ā ∼= A)
[16, Lemma II.5]. By Corollary 1 there exists a separable state σ(AĀ)N with

||ρ(AĀ)N − σ(AĀ)N ||LOCC→(AĀ:···:AĀ) ≤
(N − 1)

√
log |A|2

k
1

2N

Now we apply the dimension-independent de Finetti theorem for separable states [34, Theorem 6] to σ and conclude
that there exists a de Finetti state τ(AĀ)n with

||σ(AĀ)n − τ(AĀ)n ||1 ≤ 2
n2

N
.

Using || ? ||LOCC→ ≤ || ? || and tracing out the Ā systems we find the following de Finetti type theorem which only
depends logarithmically on the local dimension.

Corollary 3. Let n ≤ N ≤ k. For all permutation-invariant states ρAk there exists a state τAk =
∑
i piσ

⊗k
A,i with

||ρAk − τAk ||LOCC→(A:A:···:A) ≤ (N − 1)

√
2 log |A|
k

1
2N

+ 2
n2

N
.

Whereas arguably k has to be rather large for the bound to be of any use (i.e. it decreases for N =
√

log k and
large k), we feel that this result – by drastically breaking the linear dimension barrier of the trace norm – may find
application in theoretical aspects of quantum information theory and provide new insights into the study of quantum
de Finetti theorems.
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Conclusion. Fast algorithms for deciding separability of quantum states are important both from a theoretical
perspective in quantum information theory and from the point of view of experimental work, where the proof of a
successful experiment often lies in the certification of entanglement in the created multiparticle quantum state. In
this work we have shown that the detection of multiparticle entanglement can be done much faster than previously
anticipated by providing new runtime bounds on the Search for Symmetric Extensions. We hope that this work fosters
further theoretical and experimental investigation into the detection of multiparticle entanglement.
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