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With the advent of quantum information, the violation of a Bell inequality is used to witness
the absence of an eavesdropper in cryptographic scenarios such as key distribution and randomness
expansion. One of the key assumptions of Bell’s Theorem is the existence of experimental “free will”,
meaning that measurement settings can be chosen at random and independently by each party. The
relaxation of this assumption potentially shifts the balance of power towards an eavesdropper. We
consider a no-signalling model with reduced “free will” and bound the adversary’s capabilities in
the task of randomness expansion.

PACS numbers: 03.65.Ta, 03.65.Ud

Introduction.—A source of random data that can be
trusted to be truly random, and not just repeating a
pre-determined, apparently random, sequence is a vital
resource in a vast array of applications, not least cryptog-
raphy. Within the scientific community, numerical tools
such as Monte Carlo simulations find that classically gen-
erated pseudo-randomness is insufficient [1] while in a
much broader community, the lack of trust in randomness
generation leads, for instance, to widespread accusations
of deck rigging in online gambling. Quantum mechanics
has long been known to provide intrinsic randomness (see
references in [2]), but it has recently been noticed that
Bell tests allow us to go further: they provide quantitative
bounds for the amount of randomness that is generated
[3–6]. Moreover, these bounds are device-independent, in
the sense that they are obtained only from the observed
statistics, without reference to a description of the physi-
cal system or the implemented operations. Two different
types of bound can be achieved, either by assuming the
validity of quantum mechanics or merely with the weaker
assumption of no-signalling in a fully black-box scenario.

In a randomness expansion protocol [3, 6], a pre-
established stock of randomness (for instance, a string
of random bits) is used to make measurement selections
in a series of Bell tests, operated by two parties (Alice
and Bob) in distantly separated parts of the same lab-
oratory. The correlation statistics of the outcomes are
used to violate a Bell inequality [7], giving a quantitative
bound on the degree to which an adversary or eaves-
dropper (Eve) is excluded. This bound can be used to
measure the randomness of the outcomes, which can be
added to the stock of private randomness [3]. To cer-
tify the private randomness produced, it is crucial to not
only determine what we call the guessing probability G
(defined below), but also to ensure that Eve cannot some-
how fake this bound, perhaps by bypassing some of the
assumptions used in the derivation of the bound. One of
these assumptions is that Alice and Bob can randomly

and independently select their measurements. While Al-
ice and Bob could rely on making these choices with their
own free will, in practice they use random number gener-
ators (RNGs), which Eve could potentially manipulate to
deliberately introduce patterns undetected by standard
statistical tests, giving rise to the interpretation that Eve
compromises the experimental free will of Alice and Bob.

We study the extent to which Eve, by influencing those
measurement choices, can manipulate the degree of vio-
lation (S) of a Bell test using a no-signalling model [8, 9].
Eve does her best to pre-program the outcomes of Alice’s
and Bob’s measurements so that, for prescribed S and
degree of influence upon Alice’s and Bob’s measurement
choices, her probability of guessing the measurement out-
comes correctly is maximized. The more influence she
has, the less “free will” can be attributed to Alice and
Bob, and if they wrongly assume that they have com-
plete free will, they can be fooled into thinking that their
observed outputs are not predetermined.

Previous discussions of the free will assumption have
quantified the concept in differing ways [8–11]. The up-
shot is that free will seems to be a critical resource for the
violation of Bell inequalities in order to derive their usual
interpretation. Indeed, if free will is given up on 41% of
the runs of an experiment in the Clauser-Horne-Shimony-
Holt (CHSH) scenario [12], singlet state correlations can
be reproduced from classical correlations [13].

An operational way of quantifying randomness involves
the notion of guessing probability or predictability: a pro-
cess has large randomness if it is hard to guess its out-
comes. Here we establish bounds on the average proba-
bility of guessing an outcome of a Bell test, for a given
amount of free will, using a variant of Hall’s relaxed Bell
inequalities [14]. While these results require only the no-
signalling restriction, for comparison we also establish
bounds on a quantum-limited Eve who eavesdrops each
run independently.
Model.—We work in the simplest scenario of two par-
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ties, each with two inputs and two outputs, for which
the CHSH inequality [12] is the unique Bell test. The de-
vices that Alice and Bob use are treated as black boxes,
potentially prepared by Eve. The inputs are labelled Aj
and Bk respectively, where j, k ∈ {0, 1}, and the outputs
are labelled a, b ∈ {0, 1}. The CHSH test is repeated a
large number of times, yielding a probability distribution
of the outputs {p̃(a, b|Aj , Bk)}, which we assume to be
no-signalling. In terms of these probabilities, the CHSH
correlation function S can be defined as

S =

∣∣∣∣∣∣
∑

a,b,j,k∈{0,1}

(−1)a+b+jkp̃(a, b|Aj , Bk)

∣∣∣∣∣∣ . (1)

By imposing that the probability of each input is
equally likely, i.e. p(Aj , Bk) = 1

4 for all j, k ∈ {0, 1}, Al-
ice and Bob, with no knowledge of the underlying strat-
egy, are not able to detect any deviations of these prob-
abilities from the uniform distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) that

they expect. Eve’s control over the inputs and outputs
is described by an underlying variable λ, correspond-
ing to conditional probability densities p̃(a, b|Aj , Bk, λ)
and ρ(λ|Aj , Bk). These are related by Bayes’ theo-
rem: p̃(a, b|Aj , Bk) =

∫
dλ p̃(a, b|Aj , Bk, λ)ρ(λ|Aj , Bk).

The summation over b and a respectively produce the
marginals p̃(A)(a|Aj , λ) and p̃(B)(b|Bk, λ). No-signalling

imposes that the marginal probabilities p̃(A) and p̃(B) are
independent of Bk and Aj , respectively.
Guessing probability.—The guessing probability, or

predictability, G(λ) for a given underlying variable λ is
the maximum over all these marginal probabilities

G(λ) = max
a,Aj ,b,Bk

(
p̃(A)(a|Aj , λ), p̃(B)(b|Bk, λ)

)
,

i.e. it upper bounds the probability of Eve, who knows
λ, guessing one of Alice’s or Bob’s outcomes. For Alice,
Bob or any observer without access to the underlying
variables, the guessing probability is the weighted aver-
age of G(λ) over λ, i.e.

G =

∫
dλ ρ(λ)G(λ), (2)

where ρ(λ) is the probability distribution of the variable
λ. When G = 1

2 (G = 1) the underlying model is com-
pletely indeterministic (deterministic).

For a given Bell violation, tight bounds for G have been
calculated in the literature [15] for the case of complete
free will. In order to formulate the relaxation of free
will, we define a free will parameter, P , as the maximum
probability that a particular pair of measurement settings
is chosen, maximized over all control variables λ, i.e.

P = max
j,k,λ

p(Aj , Bk|λ). (3)

This quantifies the maximum deviation of p(Aj , Bk|λ)
from the uniform distribution, i.e. the extent of Eve’s in-
fluence over the supposedly free choice. For a 2-party,

2-setting protocol, P takes values in the interval [14 , 1];

P = 1
4 corresponds to the case of complete free will, while

P = 1 corresponds to a deterministic selection specified
by Eve. This definition relates directly to the probabil-
ity that a pair of inputs is chosen for a given underly-
ing variable. While being more natural for our model,
this differs from that given in [8], which involves con-
ditional probability distributions of the underlying vari-
able given the measurement inputs. Nevertheless, a cor-
respondence between the two can be found via Bayes’
Theorem. From these definitions, we obtain the follow-
ing theorem (proved in Appendix A):

Theorem 1 The maximum possible CHSH expectation
value Smax(G,P ), for a guessing probability G and
free will parameter P , for any no-signalling model with
p(Aj , Bk) = 1

4 (i.e. all inputs are equally likely), is

Smax(G,P ) =

{
4− 8(2G− 1)(1− 3P ) P ≤ 1

3 ,

4 P ≥ 1
3 .

(4)

We illustrate this result with three limiting cases. If
Eve knows exactly, for each instance of the measurement,
what will be measured, then Alice and Bob have no “free
will” (P = 1); their measurement settings are predeter-
mined. Eve can then pre-program the outcomes of the
measurements in such a way that the outcomes are com-
pletely predictable (G = 1), while allowing Alice and
Bob to attain any value of S up to its maximum value of
4. On the other hand, if Eve has no prior knowledge of
what will be measured (P = 1

4 ), Alice’s and Bob’s actions
are not predetermined and hence, we say that they have
complete experimental free will. Any attempts to pre-
program the outcomes of the measurements with com-
plete predictability (G = 1) will result in values S ≤ 2,
familiar from the standard CHSH inequality. Finally,
if Eve gives up any intention of extracting information
(G = 1

2 ), then Alice and Bob could share an arbitrary
no-signalling distribution, which will allow any S ≤ 4.

From Theorem 1, Eve’s knowledge of Alice’s and Bob’s
bits, as quantified by G, can be estimated given an ob-
served CHSH correlation S as the free will parameter
P . The bound in the theorem is tight, i.e. for any
G and P , there exists a no-signalling model for which
the CHSH correlation is equal to Smax(G,P ) (see Ap-
pendix A for explicit constructions). In particular, sup-
pose that Alice and Bob measure a CHSH correlation S.
If S ≤ Smax(1, P ), then Alice and Bob know that the bits
could have been completely pre-programmed before the
Bell measurements were carried out. On the other hand,
if S > Smax(1, P ) (anywhere above the G = 1 (NS) line
in Fig. 1), then Alice and Bob can conclude that some
indeterminism has been introduced into the model, and
that the guessing probability is less than unity. They
can then use Eq. (4) to determine an upper bound for
the guessing probability G. For the case P ≥ 1

3 , we
have Smax(1, P ) = 4, which implies that G = 1, i.e. Eve
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FIG. 1: (Color online) The maximal CHSH expectation value
Smax(G,P ) plotted against the free will parameter P , for the
no-signalling (NS) G = 1 model (solid line), and the quantum
(Q) G = 1

2
model (dashed line). Region III (unshaded) can

be explained by a deterministic G = 1 model. In regions
I (darker gray) and II (lighter gray), the results cannot be
deterministic; Eve cannot know the outputs with certainty.
Regions II and III together give the set of (S, P ) values that
may be attained by a quantum model.

can use a deterministic protocol to achieve maximal Bell
violation. The case where P < 1

3 is more interesting
because only in this case is the upper bound on the max-
imum guessing probability for a given CHSH correlation
S non-trivial:

G ≤ min

{
1

2

(
1 +

4− S
4− Smax(1, P )

)
, 1

}
, P <

1

3
. (5)

The observed values for S and G thus give a tight upper
bound on the guessing probability (Fig. 2), from which
the trade-off between the degree of free will and Bell vi-
olation can be seen.

Since our motivation is the task of randomness expan-
sion, we need to evaluate the amount of true random-
ness that we can produce via post-processing. The de-
gree to which this can be achieved is characterized by
the min-entropy, which is used by a classical random-
ness extraction procedure in order to guarantee total pri-
vacy of a (shorter) random output string. For a single
run, the min-entropy is defined to be H∞(AB|XY ) =
− log2 maxa,b,x,y p̃(a, b|x, y) [16], which is clearly bounded
from below by − log2G. For experimental estimation of
a Bell violation, a Bell test must be performed on the de-
vices many times in succession, requiring a bound for the
min-entropy over a series of n runs. Assuming that Eve
can only perform a collective attack without memory, i.e.
that the devices behave independently and identically in
each run, then p̃(r|s) = p̃(anbn|xnyn) =

∏
i p̃(aibi|xiyi)

by independence and so H∞(R|S) ≥ −n log2G [3].
Existing privacy amplification methods rely on the use

of a perfectly random seed to, for instance, select uni-
formly from a family of hashing functions. Such perfect
randomness may not be available in the present scenario
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FIG. 2: (Color online) Optimal guessing probability G(S, P )
for no-signalling models at different CHSH expectation values,
including S = 2 (local deterministic) and S = 2

√
2 (Tsirelson

bound). In the cases of general and factorizable distributions,
the optimal guessing probabilities approach the vertical dot-
ted lines as S goes to 4.

of reduced free will. Assuming (as we have throughout
this paper) only memoryless collective attacks by Eve,
we can outline an effective privacy amplification strategy,
and, in the instance where Eve is more sophisticated, re-
fer the reader to [10]. Suppose that Alice and Bob have
succeeded in generating a string of bits xk, and have ob-
tained a bound on Eve’s maximum probability for guess-
ing any one of Alice’s bits, G. If Alice takes N such bits
and xors them, the resulting output bit can be guessed
by Eve only if she has incorrectly guessed an even number
of the outcomes of the individual measurements, which
occurs with probability (1 + (2G− 1)N )/2. Evidently, as
N becomes large, this tends to 1/2. By setting an allow-
able threshold ε and choosing N = log(ε)/ log(2G − 1),
Alice and Bob can pick their desired bound on security
of the generated bit as a compromise on the number of
raw key bits required to calculate it.
Restricted adversary.—Theorem 1 did not impose any

restrictions on the probability distribution p(Aj , Bk|λ).
Although a non-factorizable distribution can always be
made factorizable by utilizing more hidden variables,
this changes the value of P . Therefore, for a fixed
value of P , Eve requires access to quantum technol-
ogy in order to generate the most general of such dis-
tributions, e.g. RNGs which share the entangled state
|φλ〉 =

∑
j,k

√
p(Aj , Bk|λ)|j〉 ⊗ |k〉. In its absence, one

should impose that the probability distributions are fac-
torizable, i.e. p(Aj , Bk|λ) = p(A)(Aj |λ)p(B)(Bk|λ). The
results of Theorem 1 hold in the case of an arbitrary prob-
ability distribution. Imposing this factorizability condi-
tion changes the upper bound for the Bell violation. In
this case, as shown in Appendix A,

Smax
fac (G,P ) =

{
4− 4(2G− 1)(1− 2P ) P ≤ 1

2

4 P ≥ 1
2 ,

(6)

reducing Eve’s influence compared to Eq. (4). The up-
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per bound on the guessing probability G for an observed
CHSH expectation value S is analogous to Eq. (5), upon
replacing Smax with Smax

fac and the validity range by
P < 1

2 . Also, note that for P = 1
4 , corresponding to

the case of complete free will, the bounds on G for both
the general and factorizable cases, reduce to the result in
[3]: G ≤ 3

2 −
S
4 .

Quantum limit.—The previously derived bounds ap-
ply under the weak assumption of no-signalling, which
means that Eve might be able to supply Alice and Bob
with any no-signalling distribution, such as a PR box [17–
19], giving the maximal violation of the CHSH inequality.
However, assuming the validity of quantum mechanics,
Eve can achieve only much lower limits; in the case of
P = 1

4 , she can do no better than S = 2
√

2− (2G− 1)2

[3]. In the case of P > 1
4 , Alice and Bob perform a CHSH

test and calculate their expectation value averaged over
all runs of the experiment, as before. Eve uses a hidden
variable model to determine the probabilities p(Aj , Bk|λ)
that, on a given run, Alice and Bob use to select their
measurement settings. As far as Eve is concerned, she
just has to optimize her quantum strategy for each of
the different values of λ independently, and the corre-
sponding probabilities p(Aj , Bk|λ). For a given λ, Alice
and Bob (unbeknownst to them) are effectively playing
a CHSH sub-game, with the correlation function

S(λ) = 4
∣∣∣ ∑
a,b,j,k

(−1)a+b+jkp̃(a, b|Aj , Bk)p(Aj , Bk|λ)
∣∣∣.
(7)

In Appendix B, we derive the generalized Tsirelson
bound for this class of games, and find the optimal dis-
tribution of probabilities to maximize S(λ) for a given P .
We also prove that for P < 3

10 , this maximum necessar-

ily corresponds to the case G = 1
2 . This implies that, for

the optimal quantum strategy (meaning largest achiev-
able CHSH expectation value), we have for P < 3

10 ,

Smax
Q ( 1

2 , P ) =
4(1− 2P )3/2√

(1− 3P )
. (8)

For P ≥ 3
10 , a deterministic strategy is used, and hence,

Smax
Q (1, P ) = Smax(1, P ).
This considerably restricts the region of operation for

Eve, as can be seen in Fig. 1. Interestingly, for P ≥

3
10 , there is no quantum strategy that outperforms the
deterministic strategy. This means that if Alice and Bob
estimate that P ≥ 3

10 , a randomness expansion protocol
based on the CHSH inequality cannot function. We have
not succeeded in finding a closed form for the general
Smax(G,P ) trade-off in the quantum strategy, except for
recovering known limits such as P = 1

4 [3] and G = 1
(Eq. (4)), although it can be solved numerically.

Conclusions.—We have shown that by influencing the
apparently free choice of measurement settings in a Bell
test, the adversary can fool the participants into thinking
they share quantum correlations when, in fact, they do
not and are being manipulated. We have specified the
optimal models for Eve to maximize the guessing proba-
bilities based on only no-signalling models, thereby spec-
ifying, for a given Bell correlation, a bound on the extent
of private randomness that can be extracted. This uni-
versal bound requires only that Eve is limited to the use
of no-signalling devices (including PR boxes, etc.). We
have also obtained stronger results when Eve is further
assumed to be limited to quantum devices.

In order to bound the exclusion of an eavesdropper, a
prior about the degree of manipulation is required. How
Alice and Bob might assess this value remains an open
challenge. We have also restricted Eve to performing col-
lective attacks. Whilst this is made possible by ensuring
that each run of the protocol is performed on causally
disconnected devices, this approach eschews practicality.
Attempts to bypass the restriction to collective attacks
[10, 15, 20] merit further investigation.

A natural extension of this work is to ask whether the
local strategies employed here could be used to take ad-
vantage of a key distribution scheme, where Eve fakes a
Bell violation to undermine the security that Alice and
Bob believe is in their key. There are a number of sub-
tleties that necessitate a more detailed study.
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Appendix A: Proof of Bell violation bounds and
optimal models

In this appendix, we will prove Theorem 1, namely the
tight relationship between the guessing probability, G,
the free will parameter, P , and the observed CHSH ex-
pectation value, S, both where a generalized probability
distribution is allowed (Eq. (4)), and where only a factor-
izable probability distribution is permitted (Eq. (6)). We
start by defining mj = p̃(A)(0|Aj , λ), nk = p̃(B)(0|Bk, λ)
for j, k ∈ {0, 1}. Hence,

G(λ) = max{m0,m1, n0, n1, 1−m0, 1−m1, 1−n0, 1−n1}.

If we also define cjk = p̃(0, 0|Aj , Bk, λ), then the other
probabilities are readily expressed in these terms:

p̃(0, 1|Aj , Bk, λ) = mj − cjk,
p̃(1, 0|Aj , Bk, λ) = nk − cjk,
p̃(1, 1|Aj , Bk, λ) = 1 + cjk −mj − nk.

In order to prove tight bounds, we will follow the tech-
niques in [14]. By Eq. (B3) of [14],

S ≤ 4− 2

∫
dλ J(λ),

where J(λ) = ρ(λ|A0, B0)|m0 − n0| + ρ(λ|A0, B1)|m0 −
n1| + ρ(λ|A1, B0)|m1 − n0| + ρ(λ|A1, B1)|m1 + n1 − 1|
and ρ(λ|Aj , Bk) is the probability distribution of λ given
inputs Aj , Bk. An upper bound for S corresponds to
a lower bound for J(λ). From the definition of J(λ),
J(λ) ≥ (|m0 − n0| + |m0 − n1| + |m1 − n0| + |m1 +
n1−1|) minj,k ρ(λ|Aj , Bk). Consider the expression K =
|m0 − n0| + |m0 − n1| + |m1 − n0| + |m1 + n1 − 1|.
By applying the triangle inequality to the first and sec-
ond terms and to the third and fourth terms, we obtain
K ≥ |n0−n1|+|n0+n1−1|. Similarly, applying the trian-
gle inequality to the first and third terms and to the sec-
ond and fourth terms gives K ≥ |m0−m1|+|m0+m1−1|.

Since G(λ) was defined as the maximum of a set of 8
elements {m0,m1, n0, n1, 1−m0, 1−m1, 1− n0, 1− n1},
it has to be equal to at least one of them. Without loss of
generality, suppose that G(λ) = n0. Then n0 ≥ n1, 1 −
n1, which implies thatK ≥ n0−n1+n0+n1−1 = 2G(λ)−
1. Consequently, J(λ) ≥ (2G(λ)− 1) minj,k ρ(λ|Aj , Bk).
By Bayes’ Theorem and our assumption that p(Aj , Bk) =
1
4 , we obtain

S ≤ 4− 8

∫
dλ (2G(λ)− 1)ρ(λ) min

j,k
p(Aj , Bk|λ). (A1)

We can now consider different allowable sets of p.
General case: Using the definition of P in Eq. (3), for

P ≥ 1
3 , we could choose p(Aj , Bk|λ) = (P,Q,Q′, 0) for

some Q,Q′ ≤ P , in some order, for each j, k ∈ {0, 1}.
Then minj,k p(Aj , Bk|λ) = 0, from which it follows that
Smax = 4. For 1

4 ≤ P < 1
3 , given that P is the largest

probability, we have minj,k p(Aj , Bk|λ) ≥ 1 − 3P ≥ 0.
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λ AjBk pλ(AjBk) p̃jkλ(00) p̃jkλ(11) p̃jkλ(01) p̃jkλ(10)

λ1

A0B0 P G 1−G 0 0

A0B1 P G 1−G 0 0

A1B0 P G 1−G 0 0

A1B1 1− 3P 2G− 1 0 1−G 1−G

λ2

A0B0 P G 1−G 0 0

A0B1 P G 1−G 0 0

A1B0 1− 3P 1−G 1−G 0 2G− 1

A1B1 P 0 0 1−G G

λ3

A0B0 P G 1−G 0 0

A0B1 1− 3P 1−G 1−G 2G− 1 0

A1B0 P G 1−G 0 0

A1B1 P 0 0 G 1−G

λ4

A0B0 1− 3P 1−G 1−G 2G− 1 0

A0B1 P G 1−G 0 0

A1B0 P 1−G G 0 0

A1B1 P 0 0 1−G G

TABLE I: Optimal indeterministic model with guessing prob-
ability G in the general case, for 1

4
≤ P ≤ 1

3
. Nota-

tion: pλ(AjBk) denotes p(Aj , Bk|λ) and p̃jkλ(ab) denotes
p̃(a, b|Aj , Bk, λ).

This bound is sufficient to obtain the expression in Eq.
(4).

Factorizable case: For a separable distribution with
fixed P = PAPB , where PA = maxj,λ p

(A)(Aj |λ) (and
similarly for PB), we need to bound the minimum prob-
ability, (1 − PA)(1 − PB). This is equivalent to maxi-
mizing PA + PB subject to the conditions PAPB = P
and PA, PB ≤ 1. The optimal values are found to be
PA, PB = (1, P ) for P ≥ 1

2 and (1
2 , 2P ) for P ≤ 1

2 in
some order. These values give the bound in Eq. (6).

In order to show that these bounds are tight, we have
explicitly constructed a no-signalling model. For P ≤ 1

3
and a general probability distribution, this is given in
Table I. A P ≥ 1

3 model can be obtained in a similar
way, for example, by replacing the column pλ(AjBk) of
Table I by the values, in the same order, ((P,Q,Q′, 0),
(Q′, P, 0, Q), (Q, 0, P,Q′), (0, Q′, Q, P )), for any Q,Q′ ≤
P that satisfies Q + Q′ + P = 1. When P ≥ 1

2 and
Q′ = 0, we get an optimal model for the factorizable case.
Replacing the column pλ(AjBk) of Table I by the values,
in the same order, ((P, P, 12−P,

1
2−P ), ( 1

2−P, P,
1
2−P, P ),

(P, 12−P, P,
1
2−P ), ( 1

2−P,
1
2−P, P, P )) gives an optimal

P ≤ 1
2 model for factorizable distributions.

Appendix B: Optimal quantum strategies

While we have demonstrated the optimal strategies
when allowing for an arbitrary no-signalling distribution,
it is equally interesting to apply the more physical restric-
tion of assuming quantum mechanics. The question is,
for a given S, how can (in the black-box scenario) Eve
select the quantum state and influence Alice’s and Bob’s

choices of measurement settings in order to maximize her
guessing probability.

We start by asking a simpler question – given a
particular distribution of measurement settings pjk =
p(Aj , Bk|λ), what is the maximum value of S that Eve
can possibly achieve? We will then show that for all
these optimal strategies, we have G = 1

2 , and that for
a given P = max pjk, this value of S is optimized when
min pjk = 1 − 3P (for P ≥ 1/3 the previous determinis-
tic model suffices to achieve S = 4). This therefore de-
scribes exactly the region that a quantum Eve can have
a non-trivial guessing probability. The task of deriving a
closed-form dependence ofG on (S, P ) between theG = 1
deterministic line and G = 1

2 quantum line appears to be
non-trivial except in special cases.

Consider a CHSH inequality with non-uniform mea-
surement distribution. We maximize

SQ(p) = 4
∣∣∣ ∑
j,k∈{0,1}

(−1)jk〈ψ|pjkAjBk|ψ〉
∣∣∣

for a general probability distribution p =
(p00, p01, p10, p11). For such a two-setting, two-outcome
scenario, it is sufficient to consider just a pair of qubits
[21]. Hence, the maximization is restricted to all two-
qubit states |ψ〉 and all local operators Aj , Bk. In the
black-box scenario, Alice and Bob interpret the outputs
as ±1 values, imposing that the Aj and Bk have these as
their eigenvalues, i.e. are Pauli-like. This maximization
was achieved in a restricted scenario in [22], which
gave the maximum value of S when the measurement
distribution exhibits only local bias, i.e. Alice chooses 0
with probability p and Bob chooses 0 with probability q
so that p = (pq, p(1 − q), (1 − p)q, (1 − p)(1 − q)). We
extend their methods to the more general case that can
be implemented by Eve.

First, we formulate a Tsirelson–type bound on the ex-
pectation of outcome correlations:

SQ(p)

4
≤ ||A0 ⊗ (p00B0 + p01B1)|ψ〉||

+ ||A1 ⊗ (p10B0 − p11B1)|ψ〉||

≤
√
p200 + p201 + p00p01α+

√
p210 + p211 − p10p11α,

(B1)

where

α = 〈ψ|I ⊗ (B0B1 +B1B0)|ψ〉. (B2)

A maximum is achieved when

α =
p200p

2
01(p210 + p211)− p210p211(p200 + p201)

p00p01p10p11(p00p01 + p10p11)
. (B3)

Substituting Eq. (B3) into Eq. (B2), we obtain

Smax
Q (p) = 4

√
p00p01 + p10p11

√
p200 + p201
p00p01

+
p210 + p211
p10p11

.

(B4)
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While Eq. (B2) can be satisfied only if |α| ≤ 2, for pjk
which satisfy

1

p00
+

1

p01
+

1

p10
+

1

p11
− 2

pmin
< 0, (B5)

the expression for α in Eq. (B3) gives |α| > 2. Hence,
for α ≥ 2, the best approach is to use α = ±2, for which
the quantum bound coincides with a deterministic strat-
egy Smax

D (p) = 4 − 8pmin, where pmin is the smallest of
the four probabilities (for example, if pmin = p11, this is
achieved by pre-programming the devices to always out-
put +1 regardless of the input).

We now show that for all p with −2 < α < 2 there ex-
ists a quantum strategy that achieves the quantum bound
given in Eq. (B4), which exceeds the deterministic bound
4−8pmin. We start by using freedom over local unitaries
to specify that

B0 = X,

B1 = X cosβ + Z sinβ.

However, due to the condition α = 〈ψ|I ⊗ (B0B1 +
B1B0)|ψ〉, this instantly imposes that 2 cosβ = α. One
can readily verify that by using the initial state and mea-
surement settings

|ψ〉 =
1√
2

(|00〉+ |11〉),

A0 =
(p00 + p01 cosβ)X + p01 sinβZ√
(p00 + p01 cosβ)2 + (p01 sinβ)2

,

A1 =
(p10 − p11 cosβ)X − p11 sinβZ√
(p10 − p11 cosβ)2 + (p11 sinβ)2

,

B0 = X,

B1 = X cosβ + Z sinβ, (B6)

the correct expectation value is realized. Note that A0

and A1 are the normalized versions of the operators
p00B0 + p01B1 and p10B0 − p11B1, respectively. This
choice was made in order for the equality to hold in Eq.
(B1).

Since |ψ〉 is a maximally entangled state, we know that
the guessing probability G = 1

2 . However, it remains to
prove that this strategy is unique, up to local unitaries,
i.e. that there isn’t another strategy with a higher G. We
already know that Bob’s operators are uniquely specified
up to local unitaries. In order to see that Alice’s opera-
tors are also uniquely specified, it suffices to realize that

in order to saturate the bound, it must be that whichever
state |ψ〉 used must simultaneously be the maximal eigen-
vector of A0⊗(p00B0+p01B1) and A1⊗(p10B0−p11B1).
Again, we use local unitary freedom, this time on Alice’s
side, to specify A0. For instance, we could define A0 as
we did in Eq. (B6), and A1 = X cos γ + Z sin γ. We can
now diagonalize both operators and ascertain when they
have a simultaneous maximal eigenvector. Up to sign
changes such as γ 7→ −γ (which are associated with a
further local unitary freedom), the unique result is that
of the A1 used previously. It is then easy to check that
the overall operator has only one maximal eigenvector,
which is |ψ〉. Hence, we can conclude that in the quan-
tum limit (and within the quantum regime), G = 1

2 . Of
course, in the region α = 2 we know that G = 1.

Finally, we investigate the measurement distribution
p which yields the largest violation for a given P =
max{p00, p01, p10, p11}. The probabilities need not be
ordered, and without loss of generality we choose the
largest and smallest of these probabilities to be, say,
p00 = pmax and p11 = pmin. The normalization is

p00 = 1− p01 − p10 − p11.

To find the optimal choice of Smax
Q , we differentiate it

with respect to p01. This derivative is non-negative in
the range p01 ∈ [pmin, pmax], and zero if and only if
p01 = pmax = P , thus this choice maximizes Smax

Q .
By symmetry, we also demand that p10 = P . There-
fore the optimal measurement distribution (up to per-
mutations) is (P, P, P, 1 − 3P ). Via Eq. (B5), we see
that such a quantum strategy gives an advantage over
deterministic strategies only when P < 3

10 . When
3
10 ≤ P ≤ 1

3 , this distribution still yields the largest vi-
olation, but is achieved through a deterministic strategy
with Smax(1, P ) = 24P − 4, coinciding with the bound
given in the main text for a general distribution with
G = 1.

We conclude that the optimal quantum strategy for a
fixed 1

4 ≤ P < 3
10 and G = 1

2 gives the maximum CHSH
expectation value stated in Eq. (8). Since Eve clearly
has access to quantum technology, there is no reason to
restrict the probability distribution p to be factorizable,
analogously to Eq. (6). Nevertheless, one would obtain

Smax
Q,fac(

1
2 , P ) = 4

√
4P 2 + (1− 2P )2,

for any 1
4 ≤ P < 1

2 .


