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We consider the possibility that classical dynamical systems display motion in their lowest energy
state, forming a time analogue of crystalline spatial order. Challenges facing that idea are identified
and overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for
nonsingular Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural
arena for formation of time crystals. We exhibit models of that kind, including a model with
traveling density waves.
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In this paper we will investigate a cluster of issues
around the question of whether time-independent, con-
servative classical systems might exhibit motion in their
lowest energy states. Fully quantum systems are the sub-
ject of a companion paper [1]. Related issues have been
raised in a cosmological context [2][3], but those investi-
gations consider quite different aspects, in which the time
dependence introduced by the expansion of the universe
plays a significant role. (The term “time crystal” has
been used previously to describe periodic phenomena in
other contexts [4, 5].)

General considerations. When a physical solution of a
set of equations displays less symmetry than the equa-
tions themselves, we say the symmetry is spontaneously
broken by that solution. Here the meaning of “physical
solution” can be interpreted differently in different con-
texts, but one interesting case, that will concern us here,
is of the lowest energy solutions of a time-independent,
conservative, classical dynamical system. If such a solu-
tion exhibits motion, we will have broken time transla-
tion symmetry spontaneously. If the dynamical variable
is an angular variable, then the motion will be periodic
in time, so the time-translation symmetry is not entirely
lost, but only reduced to a discrete subgroup. Spatial
periodicity is, of course, associated with formation of or-
dinary crystals, so it is natural and suggestive to refer to
the formation of time crystals.

It is very easy to construct simple Lagrangians or
Hamiltonians whose lowest energy state is a spatial crys-
tal. With φ(x) an angular variable, the potential energy
functions

V1(φ) = − κ1
dφ

dx
+
λ1
2

(
dφ

dx
)2

V2(φ) = − κ2
2

(
dφ

dx
)2 +

λ2
4

(
dφ

dx
)4 (1)

with all the Greek coefficients positive, are minimized for
dφ1

dx = κ1

λ1
, dφ2

dx = ±
√

κ2

λ2
respectively. In both cases the

spatial translation symmetry of the original potential is
spontaneously broken; in the second case inversion sym-
metry is broken as well. The combined inversion φ(x)→
−φ(−x) is preserved in both cases, as is a combined in-

ternal space-real space translation φ(x)→ φ(x+ε)− dφ
dx ε.

From this one might surmise that time crystals are like-
wise easy to construct, at least mathematically. More-
over, higher powers of velocities appear quite naturally
in models that portray the effects of finite response times,
as we replace (

(φ(t)− φ(t− δ)
)n →̃ δnφ̇n (2)

On second thought, however, reasons for doubt appear.
Speaking broadly, what we’re looking for seems perilously
close to perpetual motion. Also, if the dynamical equa-
tions conserve energy, then the existence of a minimum-
energy solution where the variables trace out an orbit
implies that the energy function assumes its minimum
value on a whole curve in (φ, φ̇) space – not, as we ex-
pect generically, at an isolated point.
Dynamical equations. That easy/impossible di-

chotomy carries over into the dynamical equations. If
one simply turns the space derivatives in Eqn. (1) into
time derivatives, then the resulting Lagrangians

L1(φ, φ̇) = − κ1φ̇+
λ1
2
φ̇2

L2(φ, φ̇) = − κ2
2
φ̇2 +

λ2
4
φ̇4 (3)

are associated with the energy functions

E1(φ, φ̇) =
λ1
2
φ̇2

E2(φ, φ̇) = − κ2
2
φ̇2 +

3λ2
4
φ̇4 . (4)

The first of these is minimized at φ̇1 = 0, the second at

φ̇2 = ±
√

κ2

3λ2
. So the analogue of our first symmetry-

breaking example in Eqn.(1) has collapsed, but the sec-
ond survives, with a quantitative change.
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On the other hand if we convert the space derivatives
in Eqn. (1) into momenta, the resulting Hamiltonians
are

H1(p, φ) = − κ1p+
λ1
2
p2

H2(p, φ) = − κ2
2
p2 +

λ2
4
p4 . (5)

We find precisely the original algebraic structure for the

minimum-energy solutions, viz. p1 = κ1

λ1
, p2 = ±

√
κ2

λ2

respectively. Their physical implications are entirely dif-
ferent, though. Indeed, they correspond to φ̇1 = φ̇2 = 0:
thus no symmetry breaking occurs, in either case.

This disappointing consequence of the Hamiltonian
formalism is quite general. Hamilton’s equations of mo-
tion ṗj = − ∂H

∂qj , q̇j = ∂H
∂pj

indicate that the energy

function E(pj(0), qj(0)) = H(pj(0), qj(0)), regarded as
a function of the dynamical variables at a chosen initial
time, is minimized for a trajectory with ṗj = q̇j = 0,
since the gradients on the right-hand side of Hamilton’s
equations vanish.

How do we reconcile this very general null result in
the Hamiltonian approach, with our positive result in the
Lagrangian approach? The point is that the Lagrangian
L2, which gave symmetry breaking, cannot be converted
into a Hamiltonian smoothly. Indeed, expressing the al-
gebraic recipe for the Hamiltonian

H(p, φ) = pφ̇− L = pφ̇+ κ
2 φ̇

2 − 1
4 φ̇

4 (6)

(in which we have set λ2 = 1 for simplicity and dropped
all ‘2’ subscripts) as a function of

p =
∂L

∂φ̇
= φ̇3 − κφ̇ (7)

leads to a multi-valued function [6], with cusps where
∂p

∂φ̇
= 0, i.e. p = ∓ 2κ3/2

33/2
, corresponding precisely to the

energy minima φ̇ = ±
√
κ/3. (See Figure 1.) For κ ≤ 0,

H(p) is regular, but as κ passes through zero there is a
swallowtail catastrophe.

At the cusps the usual condition that the gradient
should vanish at a minimum does not apply, and so our
null result for smooth Hamiltonian systems is avoided.

For classical physics the Lagrangian formalism is ad-
equate, so let us follow that direction out further. A
logical next step would be to add a potential V (φ) to
L. Doing that, however, leads us directly into the prob-
lem with energy conservation that we anticipated earlier.
Minimizing V , we will find a preferred value for φ = φ0,
but minimizing the kinetic part will favor motion in φ,
and there is a conflict.

We can elucidate this issue as it arises for a general
Lagrangian system. Suppose that the energy function of
a system with many degrees of freedom is minimized by
nonzero velocities φ̇k0 6= 0, so that

0 =
∂E

∂φ̇k

∣∣∣∣
φ̇k
0

=

(
∂2L

∂φ̇k∂φ̇j

)∣∣∣∣
φ̇k
0

φ̇j0 . (8)

E

 p

FIG. 1: Energy is a multivalued function of momentum.

Then in the equations of motion

0 =
d

dt
(
∂L

∂φ̇k
)− ∂L

∂φk
=
( ∂2L

∂φ̇j∂φ̇k

)
φ̈j + . . . (9)

the coefficient of the acceleration in the direction φ̈j ∝ φ̇j0
vanishes at φ̇k0 . In that case the equations of motion,
which generally serve to determine the accelerations, re-
quire supplementation. (As we shall discuss below, there
are physically interesting models that avoid any singu-
larities of this type.)
Brick Wall Solutions: Upon integrating

E = 3
4 φ̇

4 − κ
2 φ̇

2 + V (φ) (10)

directly we obtain

t(φ) =

∫ φ dφ

±
√

κ
3 ±

√(
κ
3

)2
+ 4

3 (E − V (φ))

(11)

where the ± signs are independent.
The argument of the inner square root is non-negative

if and only if V (φ) ≤ E + κ2/12 ≡ ∆, where ∆ ≡ E −
E0 ≥ 0 is the energy above the minimum kinetic energy

E0 = −κ
2

12 . The inequality is saturated when φ̇ = ±
√

κ
3 ,

i.e., when the kinetic energy is minimized. Close to a
point φt where this happens,

φ̇ ≈ ±
√

κ
3 ±

√
1
κV
′(φt)(φt − φ) . (12)

Since φ cannot continue past φt without violating the
bound V (φ) ≤ ∆, it suddenly reverses direction, φ̇ =
±
√

κ
3 → ∓

√
κ
3 . Such a reversal conserves energy, but

requires a sudden jump in momentum. This is analogous
to the turning point of a “brick-wall” potential enforced
by an infinitely massive source. Unless φt is an extremum
of V (φ), the acceleration diverges at φt, as required by
the equations of motion (9).
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Small oscillations about the minimum of a generic po-
tential V (φ) ≈ 1

2µ(φ − φ0)2 exhibit turning points of
this type, with bounded orbits that oscillate between
φt = φ0 −

√
2∆/µ and φ0 +

√
2∆/µ . In the limit of

small ∆, the orbits ricochet about the minimum, with
nearly constant speed |φ̇| =

√
κ
3 , reconciling the appar-

ently contradictory conditions φ̇ = ±
√

κ
3 and φ = φ0.

Generalization: A natural generalization of the model
considered above is obtained by allowing κ to be a func-
tion of φ. Then the energy function (10) may be written

E(φ, φ̇) = 3
4 (φ̇2 − 1

3κ(φ))2 + Ṽ (φ) (13)

with Ṽ (φ) ≡ V (φ) − 1
12κ

2. The solution is again given
by Eqn. (11), and we expect a similar phenomenology of
low-energy orbits. Indeed, the energy is minimized with
respect to φ̇, as above, by φ̇ = ±

√
κ(φ)/3; expanding

Ṽ (φ) about a minimum we generically find Ṽ (φ) ≈ V0 +
1
2µ(φ − φ0), where V0 and µ are constants. Thus, as
before, low-energy orbits oscillate about φ0 with nearly
constant speed

√
κ(φ0)/3.

In the special case Ṽ (φ) = V0, the minimum-energy or-
bits are well-behaved solutions of the first-order equation
φ̇ = ±

√
κ(φ)/3. By choosing κ(φ) appropriately, any

orbit φ(t) can be realized, in many ways, as the stable
minimum energy solution to a Lagrangian of this type.

For constant Ṽ (which we now set to zero without loss
of generality), conservation of energy E ≥ 0 leads to

φ̇2 − 1
3κ(φ) = ±

√
4
3E . (14)

This equation is of a familiar form; it expresses the con-

servation of a pseudo-energy E = ±
√

4
3E for a particle

with mass m = 2 and potential V(φ) = −κ(φ)/3. This
result allows us to infer the qualitative dynamics, based
on familiar mechanical concepts. The only turning points
are of the usual variety: putting φ̇ = 0 into Eqn. (14) we
find turning points where E = V(φt) = −κ(φt)/3. The
motion is confined to a region where V(φ) ≤ E . Thus the
model can support motions in which the velocity changes
sign smoothly, but these motions require higher energy
than the minimal orbit, which is unidirectional.

Avoiding Singularities: For general potentials Ṽ (φ), we
have noted that low-energy solutions of Eqn. (13) typi-
cally display singular behavior – infinite acceleration – at

turning points. However, if Ṽ (φ) is bounded above, solu-
tions of sufficiently high energy will be smooth provided

that E ≥ Ṽmax.
Quantum mechanics can ameliorate the singularities.

In interesting cases the Hamiltonian is a multivalued
function of the momentum. This implies that the mo-
mentum does not provide a complete set of commuting
observables. Nor, therefore, does the position. Wave
functions must be defined over expanded spaces [6, 7].

Naturally Flat Directions; Double Sombrero: It can
be natural to have energy constant along an orbit, if
the points of the orbit are related by symmetry. If we

want this situation to occur along a trajectory for the
minimum-energy state, then the symmetry must must
be spontaneously broken.

Consider first a Lagrangian with a “sombrero” kinetic
term, together with the classic sombrero potential:

L = 1
4 (ψ̇2

1 + ψ̇2
2 − κ)2 − V (ψ1, ψ2)

V = −µ2 (ψ2
1 + ψ2

2) + λ
4 (ψ2

1 + ψ2
2)2 (15)

This defines a “double sombrero” model, exhibiting cir-
cular motion at constant speed in the lowest-energy state.
We may rewrite this model and its generalizations in
terms of polar fields ρ and φ, where ψ1 + iψ2 = ρeiφ ≡ ϕ.
Then the double sombrero Lagrangian takes the form

L = 1
4 (ρ̇2 + ρ2φ̇2 − κ)2 + µ

2 ρ
2 − λ

4 ρ
4 . (16)

If ρ is set equal to its value
√

2µ/λ at the minimum of
V (ρ), this reduces to our original Lagrangian (3). Gen-
eralizing, any Lagrangian with a kinetic term that is a
polynomial in φ̇, ρ̇, and ρ, and a potential energy depend-
ing only on ρ, will preserve the symmetry φ→ φ+ η.
Charge and Locking: The charge operator associ-

ated with the original (broken) symmetry is Q =

−
∫
i(ϕ∗πϕ∗ − ϕπϕ) where πϕ = ∂L

∂ϕ̇ depends only on φ̇

and ρ. Thus in states with constant, non-vanishing val-
ues of ρ and φ̇ we have a non-zero, uniform density of Q.
This is significant in two ways:

First: If we suppose that our system is embedded in a
larger symmetry-conserving bath and undergoes a tran-
sition to the symmetry-breaking state, e.g. that it is a
material body cooled through a phase transition, then
the transition will necessarily be accompanied by radia-
tion of an appropriate balancing charge.

Second: Although invariance under both infinitesimal
time-translation φ(t) → φ(t + ε) and infinitesimal phase
(charge) translation φ → φ + η are broken by constant-

φ̇ solutions φ(t) = ωt + β, the combined transformation
with ωε+η = 0 leaves the solution invariant. Thus there
is a residual “locked” symmetry. To exploit it, we can go
to a sort of rotating frame, by using the shifted Hamilto-

nian H̃ = H−ωQ to compute the evolution [3, 8]. (Here
we normalize Q so that ϕ has unit charge.) In the rotat-
ing frame, the equations of motion will not contain any
explicit time dependence, but there will be a sort of effec-
tive chemical potential (associated however with a broken
symmetry). The most interesting effects will arise at in-
terfaces between the locked phase and the normal phase,
or between different locked phases, as exemplified in the
preceding paragraph.
Space-Time Structure; More Complex States: We can

also contemplate slightly more complex examples, that
support qualitatively different, richer physical effects. If
there is a potential for ∇ϕ, or ultimately for ∇ρ, that fa-
vors gradients, then we can have a competition between
the energetic desirability of putting ρ at the energetic
minimum and accommodating non-zero gradients. Un-
like the case of time derivatives, there is no general bar-
rier to reaching a stable compromise. To keep things
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simple, let us suppress the underlying ϕ structure and
consider the potential

V (ρ) =
κ1
2

(
1− aρ2 − b

(
dρ

dx

)2
)2

(17)

with a, b > 0. This potential is minimized by

ρ0(x) =

√
1

a
sin(

√
a

b
x+ α),

which reduces the translation symmetry to a discrete sub-
group. Constant φ̇ produces a charge density wave.

If we also have a term of the form

Vgradient =
κ2
2

(
dφ

dx
− µdρ

dx

)2

(18)

then at the minimum φ0(x) will develop spatial structure
as well, according to φ0(x) = µρ0(x) + β, breaking the
phase (charge) symmetry completely. (Note that Vgradient
respects the symmetry φ→ φ+ η.)

We can engineer similar phenomena involving φ̇ most
easily if we work at the level of the energy function. One
can derive general energy functions involving powers of φ̇
from Lagrangians of the same kind, so long as there are
no terms linear in φ̇. Thus if we have additional term

Ekinetic(φ) =
κ3
2

((
dφ

dx

)2

− 1

v2
φ̇2

)2

(19)

then at the minimum we have

φ0(x, t) = µρ0(x, t) + β (20)

ρ0(x, t) =

√
1

a
sin
(√a

b
(x± vt) + α̃

)
. (21)

Here in Eqn. (21) we have adapted our solution ρ0(x) for
the potential (17) by taking α = ±vt + α̃. In doing this

we assume that the energy intrinsically associated with
time derivatives of ρ vanishes (or that it is dominated by
the locking effects of Eqns. (18, 19)). Both spatial and
time translation are spontaneously broken, as is reflected
in the disposable constants α̃, β, and so is time-reversal
T , as reflected in the disposable sign.

Combining Eqns. (20, 21), we now have a traveling
charge density wave. Thus this example exhibits its time-
dependence in a physically tangible form. The residual
continuous symmetry is reduced to a combined discrete
time-space-charge transformation. Although our con-
struction has been specific and opportunistic, it serves to
establish the existence of a universality class that, since
it is characterized by symmetry, should be robust. It is
noteworthy that cyclic motion of φ in internal space has
given rise to linear motion in physical space.

Relativistic Lagrangians: All of our constructions
above have been nonrelativistic. In a relativistic the-
ory there are relations among the coefficients of time
and space gradient terms. The relativistic quartic term
L ∝ ((∂0φ)2 − (∇φ)2)2 leads to an energy that is un-
bounded below, for large gradients of one kind or another.
But use of a sextic enables positive energy. Indeed, the
energy function for ((∂0φ)2 − (∇φ)2)n is

((2n− 1)(∂0φ)2 + (∇φ)2)((∂0φ)2 − (∇φ)2)n−1. (22)

For n odd this is semi-positive definite, with a zero at
(∂0φ)2 = (∇φ)2 unless n = 1. For n even it has no defi-
nite sign. Bounded energy requires only that the leading
term have odd n and a positive coefficient and that the
coefficient of the n = 1 term be non-negative. This con-
sideration seems to have been overlooked and might help
to constrain the models of [2] [3].

Acknowledgements: We thank Maulik Parikh for help-
ful discussions. AS is supported in part by NSF Grants
PHY-0970069 and PHY-0855614. FW is supported in
part by DOE grant DE-FG02-05ER41360.

[1] F. Wilczek, arXiv:1202.2359 [quant-ph].
[2] C. Armendariz-Picon, T. Damour and V. F. Mukhanov,

Phys. Lett. B 458, 209 (1999).
[3] A. Arkani-Hamed, H. Cheng, M. Luty, S. Mukohyama,

JHEP 0405 (05): 074 (2004).
[4] A. Winfree, Biological Rhythm Research 8, 1 (1977);

A. Winfree, The Geometry of Biological Time, 2nd ed.
(Springer, 2001).

[5] Y. N. Srivastava, A. Widom and E. Sassaroli, in Pro-

ceedings of the International Conference on Macroscopic
Quantum Coherence, eds. E. Sassaroli, Y. Srivastava, J.
Swain and A. Widom (World Scientific, 1998) p. 1.

[6] M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev.
A36, 4417 (1987).

[7] A. Shapere and F. Wilczek, “Branched Quantization”, to
appear.

[8] A. Nicolis and F. Piazza, arXiv:1112.5174 [hep-th].

4


