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Abstract

Ruthenium-based perovskite systems are attractive because their structural, electronic and mag-11

netic properties can be systematically engineered. SrRuO3/SrTiO3 superlattice, with its period12

consisting of one unit cell each, is very sensitive to strain change. Our first-principles simulations13

reveal that in the high tensile strain region, it transits from a ferromagnetic (FM) metal to an14

antiferromagnetic (AFM) insulator with clear tilted octahedra, while in the low strain region, it is15

a ferromagnetic metal without octahedra tilting. Detailed analyses of three spin-down Ru-t2g or-16

bitals just below the Fermi level reveal that the splitting of these orbitals underlies these dramatic17

phase transitions, with the rotational force constant of RuO6 octahedron high up to 16 meV/Deg2,18

4 times larger than that of TiO6. Differently from nearly all the previous studies, these transitions19

can be probed optically through the diagonal and off-diagonal dielectric tensor elements. For one20

percent change in strain, our experimental spin moment change is −0.14± 0.06 µB, quantitatively21

consistent with our theoretical value of −0.1 µB.22
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Strontium ruthenate [1] belongs to a broad scope of perovskites and has attracted ex-1

tensive attention, due to its exotic properties. When slab thickness decreases, its itinerant2

ferromagnetic (FM) phase disappears [2]. This has motivated many experimental [3–6] and3

theoretical investigations [7–9] to search the origin of the loss of the FM metallic phase.4

Another perovskite, SrTiO3 (STO), is a good insulator, and also has attractive physical5

properties such as superconductivity and two-dimensional electron gas on its surface and6

interfaces [10, 11]. It would be a fascinating idea to investigate a superlattice which consists7

of one layer of “conducting” SrRuO3 and one “insulating” layer of SrTiO3, or SRO/STO su-8

perlattice. Experimentally, thicker superlattices have already been fabricated [12–15]. The9

Curie temperature decreases [14, 15] with the decrease of the period of the superlattice. The10

magnetic moment of the Ru atom is suppressed, and no FM ordering was identified in a11

1/1 superlattice. A question is thus raised whether there is indeed any magnetic ordering12

established in the SRO/STO 1/1 superlattice.13

With the advent of the state-of-the-art molecular-beam epitaxy (MBE), pulse laser de-14

position (PLD) and other growth techniques, it is now possible to fabricate interfaces with15

atomic sharpness. This is particularly true for systems with a very small lattice mismatch,16

such as SRO/STO. More importantly strain can be controlled through different substrates.17

For instance, TiO2 and MgO [16] can induce an in-plane strain of -4% and 7%, respectively.18

Piezoelectric substrates like PMN-PT even allow one to control the strain in real time [17].19

This greatly facilitates materials engineering.20

In this Letter, we report that such a superlattice undergoes an intriguing magnetic21

phase transition under epitaxial strain. Our experiment first shows that in a well prepared22

SRO/STO superlattice sample, ferromagnetic ordering can survive down to ultrashort period23

(1/1). We can tune its magnetic properties by applying different strains. Our first-principles24

calculations further reveal that the in-plane strain can drive the system from a ferromag-25

netic to an antiferromagnetic phase at a critical strain ξc = 5%. Within the ferromagnetic26

phase, three structurally different phases are identified: below 0.25% (α phase), the RuO627

and TiO6 octahedra rotate in the opposite direction but without tilting; between 0.25% and28

2.5% (β phase) tilting starts and the rotation angles of both RuO6 and TiO6 are reduced;29

and above 2.5% (γ phase), both RuO6 and TiO6 rotate in the same direction. To understand30

these dramatic changes, we carefully examine the borderline between phases and find that31

the frontier spin-down Ru-t2g orbital is mainly responsible for the phase transition, where32
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its occupation changes with the strain. These phase transitions directly lead to a qualitative1

difference in dielectric tensor, a signature that can be probed experimentally.2

We grew [SRO/STO]30 superlattice samples using laser MBE on three different sub-3

strates: STO, Nb:STO and LaSrAlTaO (LSAT). The growth of 1/1 superlattice films was4

monitored by reflection high energy electron diffraction (RHEED), which showed a layer-by-5

layer growth mode, (see the Supplementary Materials for more details.) Lattice mismatches6

in terms of STO lattice constant for these substrates are 0%, 0.05% and -0.92%, respec-7

tively. The structures were characterized by x-ray diffraction (XRD) using the synchrotron8

radiation [18] beamline BL14B1 of Shanghai Synchrotron Radiation Facility (SSRF), shown9

in Fig. 1(a). The data shows unambiguously that the superlattices are smooth and free10

of any second phase. From the (002) peaks (see Fig. 1(a)), we estimate the out-of-plane11

lattice constants for these films to be 3.982 Å, 3.978 Å and 4.009 Å, respectively, meaning12

that the samples are strained according to the substrate lattice. The Laue oscillations of13

the peak due to the total crystalline film thickness indicate a good [001] orientation of the14

film. Surface atomic force microscopy (the inset of Fig. 1(a)) reveals that all these samples15

have a smooth termination with the roughness below 1 uc.16

The magnetic properties were measured at 5K by vibrating sample magnetometer (PPMS17

VSM Option Release 1.2.4 Build 1). Although the magnetization is suppressed compared18

to the bulk SRO, clear hysteresis loops (M-H) are observed in all our samples. Superlattice19

recovers some of the lost FM ordering in SRO thin films. To our knowledge, this has not been20

reported before at 1 uc-thick SRO thin films and superlattices. Though the coercive field21

weakly depends on substrates, both the remanence and saturation field strongly depend on22

the substrates. The spontaneous magnetization changes from 0.12 ± 0.03 µB (on Nb:STO)23

to 0.30 ± 0.03 µB (on LSAT) per Ru. The Ru magnetic moment decreases as the strain24

increases (see the inset in Fig. 1(b)). For one percent change in strain, the magnetic moment25

change is -0.14± 0.06 µB. Since film thickness and growing conditions are the same for all26

our samples, the lattice mismatch, or the strain, is directly responsible for the magnetic27

properties change.28

To understand the strain effects in this superlattice, we resort to first-principles calcu-29

lations. For bulk SRO, extensive calculations have been performed to investigate changes30

in structural, electronic, and magnetic properties [8, 19–22], but very few on a superlattice31

[23–25]. We carry out first-principles calculations on a STO/SRO superlattice (see the inset32
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in Fig. 1(a)) within the local spin density approximation plus Hubbard on-site Coulomb1

repulsion (LSDA+U) [18, 26]. Within this scheme, the magnitude of Ueff is treated as an2

empirical parameter, which will be discussed in the following text and the Supplementary3

Materials.4

The in-plane tensile strain ξ, defined as ξ = (a−aSTO)/aSTO, is applied to the superlattice.5

Here a is the lattice constant in use while aSTO is that of the parent compound. The in-plane6

strain is changed from -4.5% to 6%. At each strain, the ion positions and the out-of-plane7

lattice constant are fully relaxed. There are three distinctive angles to characterize the8

structure change. One is the tilting angle φ around an axis parallel to (001) plane (see the9

inset in Fig. 1(c)). The other two angles θRu and θTi denote rotations around [001] axes of10

the RuO6 and TiO6 octahedra, respectively.11

Figure 1(c) shows the energy difference between FM and AFM phases as a function of12

strain. In a wide range of strain, the FM alignment between the neighboring Ru atoms13

is energetically favored. The magnetic moment is 2 µB per SRO formula unit, which is14

consistent with the calculated ferromagnetic ground state of bulk SRO [22]. However, when15

the tensile strain exceeds ∼5%, the structure with c-type AFM phase becomes more stable16

than that of FM. Therefore, a magnetic phase transition occurs at this critical strain. One17

notices that the total energy difference between the AFM and FM structures is linear with18

respect to strain but with three different slopes (see the caption of Fig. 1). This suggests19

structural phase transitions taking place as a consequence of strain variation.20

The observation is indeed verified. Structurally, the FM region can be subdivided into21

three different phases: ξ 6 0.25% (α phase), 0.25% < ξ 6 2.5% (β phase) and 2.5% <22

ξ 6 5% (γ phase) (see Figs. 1(c) and 1(d)). Within α phase the neighboring octahedra23

rotate counterclockwise with respect to each other, where θRu is always positive but θTi is24

negative (see Fig. 1(d)). There is no tilting, i.e. φ = 0◦. The quenching of tilting renders25

the superlattice with a high symmetry of P4/mbm, making it easy be detected (see below).26

Similar observations have been reported experimentally in single crystals [9, 27–29]. Once27

the strain exceeds 0.25%, the symmetry is reduced to P21/c. The β phase features a tilting28

(φ 6= 0◦) and two octahedra TiO6 and RuO6 rotating in the opposite direction (see θTi < 029

and θRu > 0). In the γ phase the TiO6 octahedron rotates in the same direction as RuO6.30

To shed light on this structural phase transition, we zoom in a small region around31

ξ = 0.25% (see the small dashed box in Fig. 1(d)). We manually change four structural32
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parameters (φ, θRu, θTi and ξ) around their respective equilibrium values while keeping the1

rest unchanged. To make a quantitative comparison, we choose the structure at ξ = 0.45%2

with a tilting angle φ = 3.88◦ as the reference structure since it is near the critical point.3

The energy difference curves are plotted in Fig. 2(a). The energy minimum is indeed at4

its global minimum, since each curve has a minimum at 0◦, with a small deviation in ∆θTi5

due to our energy threshold of ±1 meV in our optimization procedure. Contributions from6

each angle are very different. The rotational angle ∆θRu has the strongest effect on the7

energy change among all the angles. If we fit the energy change to a harmonic potential8

1
2
K∆θRu

(∆θRu)
2, we find K∆θRu

= 16 meV/Deg2, or 53 eV/rad2 [30]. This is much larger than9

that of K∆φ = 1 meV/Deg2 and K∆θTi
= 4 meV/Deg2. In addition, the energy change of10

∆θTi is highly anharmonic. We expect experimentally Raman spectra can easily distinguish11

them.12

It is conceivable that the above strongest contribution from ∆θRu must be associated with13

the electronic structure of Ru ions. To see this, we integrate the Ru-t2g projected density of14

states from -10 eV to the Fermi level. Figure 2(b) shows that the occupation of these orbitals15

changes substantially with strain. If we compare its change with the phase change in Figs.16

1(c) and 1(d), we find a very nice match between them. Starting from the strain away from17

the critical one, the occupations in dzx and dyz are similar. Near the phase boundary of the18

structural phase transition their occupations differ from each other. The dyz orbital gains19

electrons while the dzx loses electrons. After tilting sets in, the occupations of these two20

orbitals again become close to each other. No other element has these characteristic changes.21

Moreover, since the Fermi level is mostly contributed by the Ru-O hybridized states, this22

explains why the energy change with respect to the rotation of RuO6 is most pronounced.23

At the FM/AFM phase transition point, electrons are transferred from the dyz/zx to the dxy24

orbital. One spin down electron resides almost entirely in the dxy orbital. More details are25

provided in the Supplementary Materials.26

We also investigate the effect of the Hubbard U on the above phase transitions. Struc-27

turally, Ueff has a minor effect [8]. Changes in the rotation angles at strain ξ = 1% and28

ξ = 4.5% are too small to show. The largest change of about 2 degrees in the RuO6 rotation29

(Fig.2(c)) is found at a highly strained case (ξ = 6%). But none of these affects the above30

phase separation. Therefore, the P4/mbm → P21/c transition is robust [18]. Figure 2(d)31

shows that the band gap for the AFM phase is established for Ueff ≥ 1 eV, and the total32
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energy favors the AFM phase for Ueff > 1.5 eV. This is expected since it is well known that1

the strong on-site correlation favors an AFM phase [31].2

Since Ueff effectively splits and shifts band states, the spin moment is fixed. To compare3

with our experimental spin moment change, we set Ueff to zero [32] and compute the spin4

moment change. The results are shown in the inset of Fig. 1(b). For every percent change5

in strain, our theoretical magnetic moment change of -0.1 µB agrees with our experimental6

value of -0.14± 0.06 µB quantitatively.7

Finally, we demonstrate that both predicted structural and magnetic transitions are de-8

tectable optically. The structural phase transition at ξ = 0.25% breaks the mirror symmetry9

(C2v), while the magnetic ordering transition changes the band structure. The former leads10

to a dramatic difference in the off-diagonal element of the dielectric tensor, and the latter11

leads to another big difference in the diagonal elements. In other words, we probe structural12

and magnetic phase transition using two different tensor elements. Since VASP does not13

include the intraband contribution, we decide to use Wien2K to compute the tensor since14

both interband and intraband transitions are taken into account [18].15

The off-diagonal element of the dielectric tensor is used to probe the first order structural16

phase transition. In α phase, C2v mirror symmetry exists and all the off-diagonal elements are17

zero. When tilting sets in and the mirror symmetry is broken in β phase, nonzero εyz emerges,18

a manifestation of the beginning of octahedra tilting (see Fig. 3(a) and more discussions in19

Supplementary Materials). At the critical point the metal-to-insulator transition occurs. To20

observe this transition, the diagonal element is used. In the metallic phase, the low energy21

excitation consists of a plasma contribution, and the diagonal elements of dielectric tensor22

diverge like 1/ω. In the insulating phase, on the other hand, only interband transitions are23

left. The low energy divergence no longer exists. Such change can be seen in Fig. 3(b).24

Thus the two major phase transitions can be detected through a simple optical setup.25

In conclusion, we have shown that SRO/STO superlattice preserves its ferromagnetic26

ground state at ultra-short limit. Our experiment has demonstrated that their magnetic27

properties are tunable through different strains induced by different substrates. This is28

confirmed in our theory. Our theory further reveals a strain-dependent phase evolution for29

SRO/STO superlattice, where increase in strain can drive the superlattice from a ferromag-30

netic metallic phase to an antiferromagnetic insulating phase. There are three phases within31

FM. In the α phase, the RuO6 and TiO6 octahedra do not tilt, but in the β and γ phases,32
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they do. We have shown that the Ru-t2g orbital underlies these multiple-facet changes, which1

can be detected experimentally. By examining the effects of Hubbard U, we find that our2

theory with LSDA+U does qualitatively support our experimental findings that the strain3

induces changes in magnetic properties. Therefore, our findings are significant as they reveal4

fascinating opportunities in the Ru-based strongly correlated electronic systems, which are5

crucial for future applications in ferroics and nano devices [33–35].6
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[25] M. Verissimo-Alves, P. Garćıa-Fernández, D. I. Bilc, P. Ghosez, J. Junquera, Phys. Rev. Lett.27

108, 107003 (2012).28

[26] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev.29

B 57, 1505 (1998).30

[27] J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook and S. T. Pantelides, Phys. Rev. Lett.31

8 (August 27, 2012)



105, 227203 (2010).1

[28] A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D.2

Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin and S. J. Pennycook,3

Phys. Rev. Lett. 105, 087204 (2010).4

[29] A. Vailionis, W. Siemons and G. Koster, Appl. Phys. Lett. 93, 051909 (2008).5

[30] For a qualitative comparison, it is about 7 times larger than the spring constant for the6

rotation in C60, see G. P. Zhang, Phys. Rev. Lett. 95, 047401 (2005).7

[31] P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995)8

[32] The rigidly shifted band with a large Ueff does not allow to see the change in magnetic moment.9

Thus we set Ueff = 0 here. See more discussion in the Supplementary Materials.10

[33] J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan,11

T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S.12

Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E.13

Johnston-Halperin and D. G. Schlom, Nature (London) 466, 954 (2010).14

[34] R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).15

[35] J. H. Lee and K. M. Rabe, Phys. Rev. Lett. 104, 207204 (2010).16

9 (August 27, 2012)



O

Ti

Sr 

Ru

H (kOe)

1

0.5

0
-1 0 1

ξ (%)

M
   (μ

  )
B

z

Theory

Expeiment

Φ

θ

θ

[001]

Ti

Ru

(a) (c)

(b)
(d)

α β γ

FM AFM

A
n

g
le

 (d
e

g
re

e
)

Ru

reference

ξ=0.45%Ti

E
    - E

    (e
V

)
A

F
M

F
M

In-plane strain, ξ (%)

In-plane strain, ξ (%)

FIG. 1: (Color online) (a) X-ray diffraction pattern for the sample grown on STO substrate. Left

inset: Superlattice structure, where Sr, Ru, Ti and O atoms are shown in green, brown, blue

and red, respectively. Right inset: Surface AFM image for this sample. (b) Hysteresis loops for

[SRO/STO]30 superlattices grown on STO, Nb:STO, and LSAT substrates, respectively. The inset

shows the magnetic moment of the Ru atom as a function of strain. (Exp: unfilled symbols and

theory: filled symbols.) (c) Theoretical in-plane strain dependence of the total energy difference

between AFM and FM phases. Three phases α, β and γ in FM phase are highlighted by shaded

in three different colors. The slopes for the three fitting lines are -0.03, -0.01, -0.04 eV/percent

in strain, respectively. Inset shows the tilting angle φ and two rotational angles θRu and θTi. (d)

Optimized φ, θRu and θTi as a function of ξ. The dashed box is the region that is further examined

in Fig. 2(a).
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accuracy of 2 meV. (b) Spin-down occupation of the three Ru t2g orbitals. See spin-up occupation

in the Supplementary Materials. The occupation is calculated by integrating the projected DOS
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untilted to a tilted structure), and the metal-to-insulator transition (from a metallic FM phase to

an insulating AFM phase). (a) Off-diagonal element, Im(εyz), as a function of photon energy ~ω.

The untilted structure has a null signal, while the tilted one has a signal. (b) Diagonal elements,

Im(εxx), as a function of ~ω. The focus is on the lower energy side. In the metallic phase the

Im(εxx) diverges, while no divergence exists in the insulating phase.
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