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Gapless electronic systems containing topologically riiat Fermi points are sources of various topological
insulators. Whereas most of these special band-crossingspre built in the electronic structure of the non-
interacting lattice models, we show that a quadratic Fewmtpcharacterized by a non-zero winding number
emerges with a collinear tripl€) spin-density-wave state that arises from a perfectly deste topologically
trivial Fermi surface. We obtain a universal low-energy H&onian for the quadratic Fermi point and show
that such collinear orderings are unstable against the ofisealar spin chirality that opens a gap and induces
a spontaneous quantum Hall insulator as the temperatudle terzero.

Fermi points with nontrivial Berry connection have recegntl
been the focus of intense theoretical and experimentatteffo
These singular points are the momentum-space countefpart o ()
topological defects in ordered media; both are charaeériz » <
by a topological invariant [1]. Topological Fermi pointsar —
usually robust against small perturbations which preseeve *V '
tain discrete symmetries of the system. On the other hand,
when a gap opens at a singular Fermi point, its topological na

ture can be transferred to the resultant insulating statag (b)
rise to intriguing phases such as spontaneous quantumiHall o R
guantum spin-Hall states [2]. t\ &\

The most famous Fermi point is the Dirac point. The Fermi ——
“surface” of a half-filled honeycomb lattice, like graphene
consists of a pair of these points. Each Dirac point is simila
to a vortex in the Brillouin zone (BZ) and is characterized by _ ) _
a topological winding number — +1 [1]. Haldane showed FIG. 1: (Color online) (a) Noncoplanar spin order with a qugded

that the inclusi f lex h . inah b latti unit cell on a triangular lattice. The magnetic moments atfthur
atthe inclusion orcomplexnoppings in a honeycomb IatliC g p|attices point toward corners of a regular tetrahedsee the in-

opens up a gap at both Dirac points, giving rise to a quantunget). () Collinear spin order on the triangular latticettie enlarged
Hall state in absence of external magnetic field [3]. Similarunit cell, one site has large spin mom&x while the other three

ideas for realizing quantum Hall insulators through gappedcites have small momenrtA.

Dirac points have been explored in double-exchange models

on square, kagome, and checkerboard lattices [4—6]. By cre-

ating and manipulating Dirac points with the aid of artificia gtate of topological insulators [22].
gauge fields, it is also possible to control topological ghas
transitions in optical lattices [7, 8].

In this paper we present the first example of a quadratic
Fermi point with non-zero winding numbers that emerges

Quantum Hall effect can also be induced by opening a gafrom a topologically trivial Fermi surface through electrio-
at a topological Fermi point with a quadratic band disper-teractions. This special Fermi point results from a coline
sion [9]. These points are vortices carrying multiple tagd!  triple-Q magnetic ordering that is favoured by perfect nest-
cal charges = £2 in momentum space [10, 11]. Because of ing of the original Fermi surface. Moreover, by analyzing th
its higher winding numbers, a quadratic Fermi point can gecastability of this emergent Fermi point, we demonstrate that
into several elementary Dirac points while preservingtii@lt a non-coplanar chiral spin order is always more stable than
topological charge [10]. Unlike Dirac points where interac any other triple€ ordering (collinear or coplanar) as temper-
tion effects are suppressed due to a vanishing densityteksta ature tends to zero. The simple reason is that the non-caiplan
(DOS), quadratic Fermi points are unstable against arthjtra state lowers its energy by opening a gap at the emergent Fermi
weak short-range interactions due to their finite DOS [9, 12] point that also leads tgpontaneous quantum Hall effect. To
These Fermi points are usually protected in lattice modgls billustrate these phenomena we consider Hubbard-like mod-
C, or Cg point group symmetries. Explicit examples are tight-els on 2D lattices with &s symmetry such as triangular or
binding models on checkerboard and kagome lattices, respebhoneycomb lattices. It has been shown recently that the spin
tively [9, 13]. Topological quadratic Fermi points also app  density-wave (SDW) ground state of such models has a non-
in physical systems such as bilayer graphene [14-19], phaoplanar chiral order when the chemical potential readnes t
tonic crystals [20], oxide heterostructures [21], and acef saddle-point of the band structures [23—-27]. This magnetic



ordering has a quadrupled unit cell with local spins poitin ~ (a) K, T/t b))
toward corners of a regular tetrahedron; an example of such 004 | d
ordering on the triangular lattice is shown in Fig. 1(a). i
The spontaneous quantum Hall effect of the SDW state 0 Jspw,
arises from a non-zero scalar spin chirali; - S; x S;) of ST
the underlying magnetic structure [23, 28]. When conductio ™2 K3 Q%ﬁwz

electrons propagate through such a spin texture, theirwave 08 12 16 2
function acquires a Berry phase which is equal to half the U/t

solid angle subtended by local moments of each elementar&/ _ o _ _
plaquette. The Berry flux which is indistinguishable from aF!G- 2: (Color online) (a) The Brillouin zone of lattices Wi

: : Cs symmetry and the Fermi surface when electron filling reaches
real magnetic flux induces the quantum Hall effect. Indeedthe Van Hove singularity of the band structure. The thredimgs

quantized Hall conductivity,,, = e?/h has been explicitly wavevectors ar€, — (27/v/3,0) and Qo3 — (—7/+/3, £7).

calculated for the chiral SDW state in both triangular and-ho () phase diagram of the triangular-lattice Hubbard mo&W;

eycomb lattices [23, 24, 26, 28]. and SDW denote spin-density-wave states with collinear and non-
coplanar magnetic moments, respectively. (c) Configunatif the

) ~_ three vector order parametess, in the collinear (top) and chiral
Here we show that the recently discovered finite-+etrahedral’ (bottom) SDW phase.

temperature SDW phase witltollinear magnetic mo-

ments [29] provides a useful starting point for understand-

ing the origin of the spontaneous quantum Hall effect thais [29]
necessarily appears at lower temperatures. A strikingifeat

of this collinear SDW state shown in Fig. 1(b) is the exis- H = > e,(k)c, e, 1)
tence of a quadratic Fermi point in its mean-field band struc- ok

ture [29]. Gapless charge excitations in this SDW statet exis B Z Z Jos o o . B

only for one spin branch. More importantly, we show that P tak—q7ef ktachktpCak—p
the guadratic Fermi point has a topological winding number o

n = +2. We derive a universal low-energy Hamiltonian for + Z Z g;,ﬁCza,k—qczﬂ,k+qCCB,k+pC£a,k—p )
excitations around the Fermi point. Remarkably, the gap of FGaifkiap

the quantum Hall state is proportional to the scalar spin chi ; _ _
rality of the ordered spin state. Consequently, the tramsit Wherec, ., , creates an electron with spin=1, | and mo-

from collinear to chiral SDW order coincides with the onsetMentumk, +k (k| < 1), while g andg’ denote the forward
of quantum Hall effect. and umklapp scatterings, respectively [29]. The disparsio

around the three saddle points is giveregyk) = keke /m™,

wherel/m* ~ O(t) is of the order of bandwidthn<(¢) is a

We start by considering SDW instabilities in 2D lattices cyclic permutation of (123), ankk = k- &¢, with &3 = (1,0)
with a Cs symmetry, such as triangular, honeycomb, kagom%nd 610 — (_%’ i@). For the speciél case of Hubbard

and their decorated variants [30]. The tight-binding DOS in model, we have) — ¢/ = Us., 5/N, whereU is the on-site
cludes one or two Van Hove singularities. For example, a log- ' @B/

o . - -2 Coulomb repulsion3 denotes the opposite spin, aidis the
arithmically divergent DOS appears for filling factor 3/4 in . e
the triangular lattice, and 3/8 or 5/8 in the honeycombdatti total number of sites. Although renormalization-group JRG

. . : analysis indicated that superconductivity instabilitagymp-
At these filling factors, the Fermi surface is a regular hexag toticZIIy dominant [31] thSSDerrtexi);the Iargzs?,ae%t

inscribed within the .BZ; see Fig. 2(2). Remarkably, pairs Ofmediate RG scale and becomes dominant by slightly doping
parallel edges of this Fermi surface are perfectly nested bfyiway from the Van Hove singularity [32]

wavevectord, which are _equal to half 0 f rgmprpcal lattice The effective filling fraction restricted to this low-engrg
vectors. The perfect Fermi surface nesting is quite rolbuct a . . . . .
: . . . . model can be obtained by a simple geometrical consideration
is broken only by the inclusion of third nearest-neighbor or - . S -
longer range hopping amplitudes As shown in Fig. 2(a), the filled region in the vicinity of a
' saddle point is bounded by two straight lines with an angle
6 = 27 /3 between them. This gives rise to an effective filling
SDW order appears as a weak-coupling instability inducedactor: v.g = 6/7 = 2/3. In the folded BZ of the triple-
by perfect Fermi surface nesting. In particular, the natfre Q SDW states, the three saddle points are shifted to the zone
the SDW instability is mainly controlled by the states that a center; each corresponds to two electron bands with differe
close to the saddle poinks,, shown in Fig. 2(a)f = 1,2,3),  spin species. An effective 2/3 filling indicates that 4 outhef
where a vanishing Fermi velocity gives rise to a logarithmi-6 bands are filled in the insulating state.
cally divergent DOS. The effective Hamiltonian for the SDW The component of the SDW order parameter asso-
ordering expressed in terms of these low-energy electronsiated with the nesting wavevectoQ, is A, =



Y ok (ak TapCepi)s Wherev = g + ¢'. A mean-field — +24 ]
decoupling of the interaction terms in (1) based on this SDW +Ad - g
order parameter yields a Hamiltonian: €, 0 §
YN B 7
1 2 g
e = [ a3 180+ 303 s Meagoeque @ 26 :
n € aBk - (a) T - (b) T
with the interaction matrix: 0 02 04 k0.6 08 1 0 02 04,06 08 1
koksl As-o Ay-o 1 A &
MK =| As-0 ksk1 Ao |. (3) () I I
As-0c Ao k1 ko 1 €2
+A _/ .
Herel is a2 x 2 identity matrix,oc = (¢%, 0¥, c?) is a vector €1
of Pauli matrices, and we have set = 1 for simplicity. i T
To examine the structure of the SDW state near the order- 3 (d)l L
ing temperature, a Ginzburg-Landau expansion up to sixth Ay 0 02 04 06 08 1
order in A was derived in Ref. [29] by integrating out the W

fermions. The analysis found that a collinear SDW state with
transition; the corresponding spin order is shown in Fig)1( (%:0:0) in the folded BZ for the (a) collinear and (b) noncoplanar
At a lower temperature. the syst d ther 4 SDW states. The calculation is done for the special caséamigular
e . P ure, yStem undergoes anotneriransl i o The quadratic Fermi point with winding number= +2 is
tion into a chiral SDW state whose three components of the Ofarked bye in panel (a). Each band in the noncolanar SDW state
der parameter are orthogonal to each other and have the samejoubly degenerate. (c) An equivalent tight-binding maxtethe
amplitude, as shown in Fig. 2(c). The real-space magnetic otriangular loop for Hamiltonian (3). (d) Energy levels agth = 0

der shown in Fig. 1(a) has a quadrupled unit cell with localas a function of the invariant Wilson loo@’. The collinear and
spins pointing toward different corners of a regular tet¢rah tetrahedral SDW states haji¢’| = 0 and 1, respectively.

dron. An explicit calculation for the triangular-latticeub-
bard model gives a phase diagram shown in Fig. 2(b), which

is consistent with the two-stage ordering scenario desdrib We now ShOV\_’ that the tr.ansmon from cc_)lllmegr to .Ch"
above. ral SDW states is a topological phase transition involving a

The collinear SDW state is a half-metal which hosts aquadratic Fermi point. Without loss of generality, we assum

Fermi point at the center of the folded BZ; its mean-field 1 = A2 = Az = Az for the collinear order. The low-

band structure is shown in Fig. 3(a). To understand the nacNergy electrons in the vicinity of the emergent Fermi point

ture of this gapless point, we first focus on the fermion spect°™M€ from the two bands, and 2 in Fig. 3(d); the cor-
trum atk = 0. We assume that the three order parameteréesloondIng eigenstates afg = z(c1y — cay) andyy =
have the same amplitud, as such states are favoured by the (¢, + c2) — 23 ), respectively. Introducing a pseudospin
fourth order contributions to the energy expansion in pewer 7% = =+1 to label these two states, the low-energy Hamilto-
of A, [29]. The interaction matrix (3) at thE pointinmo-  nian in this basis is given by

mentum space is equivalent to a tight-binding problem on a

triangular loop (see Fig. 3(c)) with a spin-dependent hogpi Hk) =hol+do7" +d.77, ©)

tij = tUij = Aﬁ O = Aexp(i% fA . dr), whereA is

a non-Abelian gauge potential. Its spectrum depends only o
the gauge-invariant Wilson looy” = tr (U1 U3 Usy). In- he A (kg n kg)/4
terestingly, this non-Abelian flux is proportional to thekr 0= oy

spin chirality dy = koky/2, d.= (K2 —k})/4. (6)

W =—iA; - (Ay x Az)/A3 (4) A diagonalization ofH (k) yields a flat band; x = A and
a quadratic bane, . = A — |k|?/2. The pseudovector field

Explicitly, the energy levels at thE point are solutions of d = (d,,d.) shown in Fig. 4(b) hag-wave symmetry. The
the polynomial equatiore?(s? — 3)? + 4(|W| —1) = 0,and  topological charge for the singulkr= 0 point is given by the
always appear itte,, pairs. Fig. 3(d) shows the three positive winding number of pseudovector field: = # fc Vou(k) -
eigen-energies as a function of the non-Abelian flux. Notingdk = +2 [1], wheref; = arctan(d./d,) andC is a contour
that there are three bands with negative energy, the chame genclosing the Fermi point.
at 2/3 filling is given byAe = 5 — ;. This gap closes only The existence of this topological Fermi point is protected
whenW = 0, i.e. for any coplanar, and particularly collinear, by theCs symmetry preserved in the collinear SDW phase and
SDW state. the spin collinearity masqueraded as an effective timensal

Whererm andr? are Pauli matrices and



symmetry. Further symmetry-breaking at lower temperature (a) e )
could remove the quadratic Fermi point by either splitting i : jj el j:
into elementary Dirac points or simply opening a gap. To P kN
study the stability of the collinear SDW state, we introduce b o LA
small deviations to the order parameters;, = Az + m,, o i - -
with m,, L z. Substituting into Eq. (2) and projecting to the W 1 s e
low-energy doublet manifol@ = (v1,12), the mean-field :1;; f \ ::\::
Hamiltonian becomes :

ks

1
Hyr = F/dr2|mn|2+Z\I/LH(k) U, 7)
n k FIG. 4: (Color online) (a) Fermi point at a quadratic bandssing
1 K atk = 0. (b) The pseudovector field = (d.,d.) with d, =
+/dr Tl(r) {— (Q177 + Qo7") + 7Y U(r), (k2 —k?)/4andd. = k.k,/2 resembles a vortex in XY systems
VA V3A with a winding numben = 2.
wherel/v" = 1/v + 1/6A is the effective inverse coupling.
The doublet order parametg®; , Q2) given by

9 5 9 collinear SDW phase is stabilized by thermal fluctuations at
Q1 = (jmu” + [my|” — 2|mj| )/ V6, finite temperatures. A lower free energy of the uniaxial SDW
Q, = (|m1|2 - |m2|2)/\/§, (8)  state results from the gapless electronic excitations had t
softer magnetic fluctuations associated with collinean spi
describes a nematic phase for tiefermions in which the  ger. Although the collinear SDW state hosting a topological
Ci rotational symmetry is broken down €, by splitting the  Fermi point has been shown to exist in three of the most rep-
quadratic Fermi point into two Dirac points. The correspond resentative 2D lattices witls rotational symmetry [29, 33],

ing SDW order is dominated by a single nesting wavevectorgng maybe also in their decorated variants, its stabilitiyiaé
The nematic phase remains a half-metal. Since the totalwindemperatures depends on details of the model.

ing number is conserved, the two residual Dirac points in the
nematic phase carry the same topological charges. The ordg
parameter is the scalar spin chirality (4):

To summarize, we have shown the emergence of a quadratic
Brmi point characterized by a winding number= +2 in
triple-Q collinear SDW states of different two-dimensional
K= A1 (Ay x Az)=A(mimd —m{mi  (9) lattices. _Such_SDW phase_arises from a perfectly nestediFerm
surface in lattices with a sixfold rotational symmetry sash
triangular, honeycomb, or kagome. Unlike most topological
It characterizes an insu|ating phase with broken timefsale Fermi pOintS which result from the SpeCiaI band structufes o
symmetry and a zero-field quantized Hall conductivity, = certain lattice problems, this quadratic Fermi point erasrg
e2/h. from a topologically trivial Fermi surface through electro

Minimization of Eq. (7) yields a ground state that preservednteractions. We have also obtained a universal low-energy
the C; rotational symmetry while breaking the effective time- Hamiltonian for the quadratic Fermi point and showed that
reversal Symmetry_ The transition from the= 0 phase into the |nStab|I|ty towards a quantum Hall insulator is desedib
the quantum Hall state with # 0 is a discontinuous one. Dy an order parameter which corresponds to the scalar spin
To see this, we compute the ground-state energy of (7) as @irality. Our theory thus explains why the topologicalym

T, Y YT T, Y Y
—|—m2m3—m2m3+m3m1—m3m1).

function of x [33]: trivial (non-coplanar) SDW order is always more stable than
the topologically trivial coplanar states at low temperasu
E(k) 2|k pFK? A
= — — log —, (10) Although spontaneous quantum Hall effect has been exten-
4 V3vA - 6A I sively discussed in the context of double-exchange or Kendo

wherep* is the density of states at the quadratic Fermi paint, lattice models, most of these studies assume classicdt loca
is an ultraviolet cutoff, and’ is the system volume. The func- ized moments to begin with. It is then natural to ask if this
tion £(x) has two minima ak = 0 andx ~ A/,/e. At higher phenomenon survives for models that incorporate quantum
temperatures, the system may remain inthe 0 minimum  spin fluctuations. Our analysis of the noncoplanar SDW or-
corresponding to the collinear SDW state, as it was found irflering in Hubbard-like models provides a positive answer
Ref. [29] for a Hubbard model on triangu|ar and honeycomﬂo this important question. Possible material realizatioh
lattices. Upon lowering the temperature, the system seitch the collinear SDW phase that hosts the topological Fermi
to the absolute minimum with = +A3 (since the triple prod-  pointinclude triangular compound hlaCo0; [34] and doped
uct is bounded) which corresponds to the non-coplanartetrédraphene [35].
hedral order. Acknowledgement. We thank A. Chubukov, R. Fernandez,
The first-order transition scenario is consistent with our e Y. Kato, |. Martin, and R. Nandkishore for useful discus-
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