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Gapless electronic systems containing topologically nontrivial Fermi points are sources of various topological
insulators. Whereas most of these special band-crossing points are built in the electronic structure of the non-
interacting lattice models, we show that a quadratic Fermi point characterized by a non-zero winding number
emerges with a collinear triple-Q spin-density-wave state that arises from a perfectly nested but topologically
trivial Fermi surface. We obtain a universal low-energy Hamiltonian for the quadratic Fermi point and show
that such collinear orderings are unstable against the onset of scalar spin chirality that opens a gap and induces
a spontaneous quantum Hall insulator as the temperature tends to zero.

Fermi points with nontrivial Berry connection have recently
been the focus of intense theoretical and experimental effort.
These singular points are the momentum-space counterpart of
topological defects in ordered media; both are characterized
by a topological invariant [1]. Topological Fermi points are
usually robust against small perturbations which preservecer-
tain discrete symmetries of the system. On the other hand,
when a gap opens at a singular Fermi point, its topological na-
ture can be transferred to the resultant insulating state, giving
rise to intriguing phases such as spontaneous quantum Hall or
quantum spin-Hall states [2].

The most famous Fermi point is the Dirac point. The Fermi
“surface” of a half-filled honeycomb lattice, like graphene,
consists of a pair of these points. Each Dirac point is similar
to a vortex in the Brillouin zone (BZ) and is characterized by
a topological winding numbern = ±1 [1]. Haldane showed
that the inclusion of complex hoppings in a honeycomb lattice
opens up a gap at both Dirac points, giving rise to a quantum
Hall state in absence of external magnetic field [3]. Similar
ideas for realizing quantum Hall insulators through gapped
Dirac points have been explored in double-exchange models
on square, kagome, and checkerboard lattices [4–6]. By cre-
ating and manipulating Dirac points with the aid of artificial
gauge fields, it is also possible to control topological phase
transitions in optical lattices [7, 8].

Quantum Hall effect can also be induced by opening a gap
at a topological Fermi point with a quadratic band disper-
sion [9]. These points are vortices carrying multiple topologi-
cal chargesn = ±2 in momentum space [10, 11]. Because of
its higher winding numbers, a quadratic Fermi point can decay
into several elementary Dirac points while preserving the total
topological charge [10]. Unlike Dirac points where interac-
tion effects are suppressed due to a vanishing density of states
(DOS), quadratic Fermi points are unstable against arbitrarily
weak short-range interactions due to their finite DOS [9, 12].
These Fermi points are usually protected in lattice models by
C4 orC6 point group symmetries. Explicit examples are tight-
binding models on checkerboard and kagome lattices, respec-
tively [9, 13]. Topological quadratic Fermi points also appear
in physical systems such as bilayer graphene [14–19], pho-
tonic crystals [20], oxide heterostructures [21], and surface

FIG. 1: (Color online) (a) Noncoplanar spin order with a quadrupled
unit cell on a triangular lattice. The magnetic moments at the four
sublattices point toward corners of a regular tetrahedron (see the in-
set). (b) Collinear spin order on the triangular lattice. Inthe enlarged
unit cell, one site has large spin moment3∆ while the other three
sites have small moment−∆.

state of topological insulators [22].

In this paper we present the first example of a quadratic
Fermi point with non-zero winding numbers that emerges
from a topologically trivial Fermi surface through electron in-
teractions. This special Fermi point results from a collinear
triple-Q magnetic ordering that is favoured by perfect nest-
ing of the original Fermi surface. Moreover, by analyzing the
stability of this emergent Fermi point, we demonstrate that
a non-coplanar chiral spin order is always more stable than
any other triple-Q ordering (collinear or coplanar) as temper-
ature tends to zero. The simple reason is that the non-coplanar
state lowers its energy by opening a gap at the emergent Fermi
point that also leads tospontaneous quantum Hall effect. To
illustrate these phenomena we consider Hubbard-like mod-
els on 2D lattices with aC6 symmetry such as triangular or
honeycomb lattices. It has been shown recently that the spin-
density-wave (SDW) ground state of such models has a non-
coplanar chiral order when the chemical potential reaches the
saddle-point of the band structures [23–27]. This magnetic
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ordering has a quadrupled unit cell with local spins pointing
toward corners of a regular tetrahedron; an example of such
ordering on the triangular lattice is shown in Fig. 1(a).

The spontaneous quantum Hall effect of the SDW state
arises from a non-zero scalar spin chirality〈Si · Sj × Sk〉 of
the underlying magnetic structure [23, 28]. When conduction
electrons propagate through such a spin texture, their wave-
function acquires a Berry phase which is equal to half the
solid angle subtended by local moments of each elementary
plaquette. The Berry flux which is indistinguishable from a
real magnetic flux induces the quantum Hall effect. Indeed,
quantized Hall conductivityσxy = e2/h has been explicitly
calculated for the chiral SDW state in both triangular and hon-
eycomb lattices [23, 24, 26, 28].

Here we show that the recently discovered finite-
temperature SDW phase withcollinear magnetic mo-
ments [29] provides a useful starting point for understand-
ing the origin of the spontaneous quantum Hall effect that
necessarily appears at lower temperatures. A striking feature
of this collinear SDW state shown in Fig. 1(b) is the exis-
tence of a quadratic Fermi point in its mean-field band struc-
ture [29]. Gapless charge excitations in this SDW state exist
only for one spin branch. More importantly, we show that
the quadratic Fermi point has a topological winding number
n = ±2. We derive a universal low-energy Hamiltonian for
excitations around the Fermi point. Remarkably, the gap of
the quantum Hall state is proportional to the scalar spin chi-
rality of the ordered spin state. Consequently, the transition
from collinear to chiral SDW order coincides with the onset
of quantum Hall effect.

We start by considering SDW instabilities in 2D lattices
with aC6 symmetry, such as triangular, honeycomb, kagome
and their decorated variants [30]. The tight-binding DOS in-
cludes one or two Van Hove singularities. For example, a log-
arithmically divergent DOS appears for filling factor 3/4 in
the triangular lattice, and 3/8 or 5/8 in the honeycomb lattice.
At these filling factors, the Fermi surface is a regular hexagon
inscribed within the BZ; see Fig. 2(a). Remarkably, pairs of
parallel edges of this Fermi surface are perfectly nested by
wavevectorsQη which are equal to half of reciprocal lattice
vectors. The perfect Fermi surface nesting is quite robust and
is broken only by the inclusion of third nearest-neighbor or
longer range hopping amplitudes.

SDW order appears as a weak-coupling instability induced
by perfect Fermi surface nesting. In particular, the natureof
the SDW instability is mainly controlled by the states that are
close to the saddle pointsKη shown in Fig. 2(a) (η = 1, 2, 3),
where a vanishing Fermi velocity gives rise to a logarithmi-
cally divergent DOS. The effective Hamiltonian for the SDW
ordering expressed in terms of these low-energy electrons

FIG. 2: (Color online) (a) The Brillouin zone of lattices with a
C6 symmetry and the Fermi surface when electron filling reaches
the Van Hove singularity of the band structure. The three nesting
wavevectors areQ1 = (2π/

√
3, 0) andQ2,3 = (−π/

√
3,±π).

(b) Phase diagram of the triangular-lattice Hubbard model.SDW1

and SDW2 denote spin-density-wave states with collinear and non-
coplanar magnetic moments, respectively. (c) Configurations of the
three vector order parameters∆η in the collinear (top) and chiral
‘tetrahedral’ (bottom) SDW phase.

is [29]

H =
∑

η;α;k

εη(k) c
†
ηα,kcηα,k (1)

−
∑

ξ 6=ζ;α;β

∑

k;q;p

gα,β c
†
ξα,k−qc

†
ξβ,k+qcζβ,k+pcζα,k−p

+
∑

ξ 6=ζ;α;β

∑

k;q;p

g′α,βc
†
ξα,k−qc

†
ζβ,k+qcζβ,k+pcξα,k−p ,

wherec†ηα,k creates an electron with spinα = ↑, ↓ and mo-
mentumKη +k (|k| ≪ 1), while g andg′ denote the forward
and umklapp scatterings, respectively [29]. The dispersion
around the three saddle points is given byεη(k) = kξkζ/m

∗,
where1/m∗ ∼ O(t) is of the order of bandwidth,(ηξζ) is a
cyclic permutation of (123), andkξ = k · êξ, with ê3 = (1, 0)

and ê1,2 = (− 1
2
, ±

√
3
2
). For the special case of Hubbard

model, we haveg = g′ = Uδα,β̄/N , whereU is the on-site
Coulomb repulsion,̄β denotes the opposite spin, andN is the
total number of sites. Although renormalization-group (RG)
analysis indicated that superconductivity instability isasymp-
totically dominant [31], the SDW vertex is the largest at inter-
mediate RG scale and becomes dominant by slightly doping
away from the Van Hove singularity [32].

The effective filling fraction restricted to this low-energy
model can be obtained by a simple geometrical consideration.
As shown in Fig. 2(a), the filled region in the vicinity of a
saddle point is bounded by two straight lines with an angle
θ = 2π/3 between them. This gives rise to an effective filling
factor: νeff = θ/π = 2/3. In the folded BZ of the triple-
Q SDW states, the three saddle points are shifted to the zone
center; each corresponds to two electron bands with different
spin species. An effective 2/3 filling indicates that 4 out ofthe
6 bands are filled in the insulating state.

The component of the SDW order parameter asso-
ciated with the nesting wavevectorQη is ∆η =
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v
3

∑

k

〈

c†ξα,k σαβcζβ,k
〉

, wherev = g + g′. A mean-field
decoupling of the interaction terms in (1) based on this SDW
order parameter yields a Hamiltonian:

HMF =
1

v

∫

dr
∑

η

|∆η|2 +
∑

ξζ

∑

αβ,k

c†ξα,k Mξα,ζβ cζβ,k, (2)

with the interaction matrix:

M(k) =





k2 k3 I ∆3 · σ ∆2 · σ
∆3 · σ k3 k1 I ∆1 · σ
∆2 · σ ∆1 · σ k1 k2 I



 . (3)

HereI is a2× 2 identity matrix,σ = (σx, σy , σz) is a vector
of Pauli matrices, and we have setm∗ = 1 for simplicity.

To examine the structure of the SDW state near the order-
ing temperature, a Ginzburg-Landau expansion up to sixth
order in∆ was derived in Ref. [29] by integrating out the
fermions. The analysis found that a collinear SDW state with
∆1 = ∆2 = ∆3 is favored immediately below the magnetic
transition; the corresponding spin order is shown in Fig. 1(b).
At a lower temperature, the system undergoes another transi-
tion into a chiral SDW state whose three components of the or-
der parameter are orthogonal to each other and have the same
amplitude, as shown in Fig. 2(c). The real-space magnetic or-
der shown in Fig. 1(a) has a quadrupled unit cell with local
spins pointing toward different corners of a regular tetrahe-
dron. An explicit calculation for the triangular-lattice Hub-
bard model gives a phase diagram shown in Fig. 2(b), which
is consistent with the two-stage ordering scenario described
above.

The collinear SDW state is a half-metal which hosts a
Fermi point at the center of the folded BZ; its mean-field
band structure is shown in Fig. 3(a). To understand the na-
ture of this gapless point, we first focus on the fermion spec-
trum atk = 0. We assume that the three order parameters
have the same amplitude∆, as such states are favoured by the
fourth order contributions to the energy expansion in powers
of ∆η [29]. The interaction matrix (3) at theΓ point in mo-
mentum space is equivalent to a tight-binding problem on a
triangular loop (see Fig. 3(c)) with a spin-dependent hopping
tij = t Uij = ∆η · σ = ∆exp(i e

h

∫

A · dr), whereA is
a non-Abelian gauge potential. Its spectrum depends only on
the gauge-invariant Wilson loopW = tr (U12 U23 U31). In-
terestingly, this non-Abelian flux is proportional to the scalar
spin chirality

W = −i∆1 · (∆2 ×∆3)/∆
3. (4)

Explicitly, the energy levels at theΓ point are solutions of
the polynomial equation:ε2(ε2 − 3)2 + 4(|W | − 1) = 0, and
always appear in±εm pairs. Fig. 3(d) shows the three positive
eigen-energies as a function of the non-Abelian flux. Noting
that there are three bands with negative energy, the charge gap
at 2/3 filling is given by∆ε = ε2 − ε1. This gap closes only
whenW = 0, i.e. for any coplanar, and particularly collinear,
SDW state.

FIG. 3: (Color online) The mean-field band structure alongk =
(k, 0, 0) in the folded BZ for the (a) collinear and (b) noncoplanar
SDW states. The calculation is done for the special case of triangular
lattice. The quadratic Fermi point with winding numbern = ±2 is
marked by⊙ in panel (a). Each band in the noncolanar SDW state
is doubly degenerate. (c) An equivalent tight-binding model on the
triangular loop for Hamiltonian (3). (d) Energy levels at thek = 0
as a function of the invariant Wilson loopW . The collinear and
tetrahedral SDW states have|W | = 0 and 1, respectively.

We now show that the transition from collinear to chi-
ral SDW states is a topological phase transition involving a
quadratic Fermi point. Without loss of generality, we assume
∆1 = ∆2 = ∆3 = ∆ ẑ for the collinear order. The low-
energy electrons in the vicinity of the emergent Fermi point
come from the two bandsε1 and ε2 in Fig. 3(d); the cor-
responding eigenstates areψ1 = 1√

2
(c1↓ − c2↓) andψ2 =

1√
6
(c1↓ + c2↓ − 2c3↓), respectively. Introducing a pseudospin

τz = ±1 to label these two states, the low-energy Hamilto-
nian in this basis is given by

H(k) = h0 I+ dxτ
x + dzτ

z , (5)

whereτx andτz are Pauli matrices and

h0 = ∆− (k2x + k2y)/4,

dx = kxky/2, dz = (k2x − k2y)/4. (6)

A diagonalization ofH(k) yields a flat bandε1,k = ∆ and
a quadratic bandε2,k = ∆ − |k|2/2. The pseudovector field
d = (dx, dz) shown in Fig. 4(b) hasd-wave symmetry. The
topological charge for the singulark = 0 point is given by the
winding number of pseudovector field:n = 1

2π

∮

C ∇θd(k) ·
dk = ±2 [1], whereθd = arctan(dz/dx) andC is a contour
enclosing the Fermi point.

The existence of this topological Fermi point is protected
by theC6 symmetry preserved in the collinear SDW phase and
the spin collinearity masqueraded as an effective time-reversal
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symmetry. Further symmetry-breaking at lower temperatures
could remove the quadratic Fermi point by either splitting it
into elementary Dirac points or simply opening a gap. To
study the stability of the collinear SDW state, we introduce
small deviations to the order parameters:∆η = ∆ ẑ + mη

with mη ⊥ ẑ. Substituting into Eq. (2) and projecting to the
low-energy doublet manifoldΨ = (ψ1, ψ2), the mean-field
Hamiltonian becomes

HMF =
1

v′

∫

dr
∑

η

|mη|2 +
∑

k

Ψ†
kH(k)Ψk (7)

+

∫

drΨ†(r)

[

1√
6∆

(Q1τ
z +Q2τ

x) +
κ√
3∆2

τy
]

Ψ(r),

where1/v′ = 1/v + 1/6∆ is the effective inverse coupling.
The doublet order parameter(Q1,Q2) given by

Q1 =
(

|m1|2 + |m2|2 − 2 |m3|2
)

/
√
6,

Q2 =
(

|m1|2 − |m2|2
)

/
√
2, (8)

describes a nematic phase for theΨ fermions in which the
C6 rotational symmetry is broken down toC2 by splitting the
quadratic Fermi point into two Dirac points. The correspond-
ing SDW order is dominated by a single nesting wavevector.
The nematic phase remains a half-metal. Since the total wind-
ing number is conserved, the two residual Dirac points in the
nematic phase carry the same topological charges. The order
parameterκ is the scalar spin chirality (4):

κ = ∆1 · (∆2 ×∆3) = ∆
(

mx
1 m

y
2 −my

1m
x
2 (9)

+mx
2 m

y
3 −my

2m
x
3 +mx

3 m
y
1 −my

3 m
x
1

)

.

It characterizes an insulating phase with broken time-reversal
symmetry and a zero-field quantized Hall conductivityσxy =
e2/h.

Minimization of Eq. (7) yields a ground state that preserves
theC6 rotational symmetry while breaking the effective time-
reversal symmetry. The transition from theκ = 0 phase into
the quantum Hall state withκ 6= 0 is a discontinuous one.
To see this, we compute the ground-state energy of (7) as a
function ofκ [33]:

E(κ)

V
=

2 |κ|√
3 v′∆

− ρ∗κ2

6∆4
log

Λ

|κ| , (10)

whereρ∗ is the density of states at the quadratic Fermi point,Λ
is an ultraviolet cutoff, andV is the system volume. The func-
tionE(κ) has two minima atκ = 0 andκ ∼ Λ/

√
e. At higher

temperatures, the system may remain in theκ = 0 minimum
corresponding to the collinear SDW state, as it was found in
Ref. [29] for a Hubbard model on triangular and honeycomb
lattices. Upon lowering the temperature, the system switches
to the absolute minimum withκ = ±∆3 (since the triple prod-
uct is bounded) which corresponds to the non-coplanar tetra-
hedral order.

The first-order transition scenario is consistent with our ex-
plicit mean-field calculations of the Hubbard model on tri-
angular or honeycomb lattices. It is worth noting that the

FIG. 4: (Color online) (a) Fermi point at a quadratic band crossing
at k = 0. (b) The pseudovector fieldd = (dx, dz) with dx =
(k2

x − k2

y)/4 anddz = kxky/2 resembles a vortex in XY systems
with a winding numbern = 2.

collinear SDW phase is stabilized by thermal fluctuations at
finite temperatures. A lower free energy of the uniaxial SDW
state results from the gapless electronic excitations and the
softer magnetic fluctuations associated with collinear spin or-
der. Although the collinear SDW state hosting a topological
Fermi point has been shown to exist in three of the most rep-
resentative 2D lattices withC6 rotational symmetry [29, 33],
and maybe also in their decorated variants, its stability atfinite
temperatures depends on details of the model.

To summarize, we have shown the emergence of a quadratic
Fermi point characterized by a winding numbern = ±2 in
triple-Q collinear SDW states of different two-dimensional
lattices. Such SDW phase arises from a perfectly nested Fermi
surface in lattices with a sixfold rotational symmetry suchas
triangular, honeycomb, or kagome. Unlike most topological
Fermi points which result from the special band structures of
certain lattice problems, this quadratic Fermi point emerges
from a topologically trivial Fermi surface through electron
interactions. We have also obtained a universal low-energy
Hamiltonian for the quadratic Fermi point and showed that
the instability towards a quantum Hall insulator is described
by an order parameter which corresponds to the scalar spin
chirality. Our theory thus explains why the topologically non-
trivial (non-coplanar) SDW order is always more stable than
the topologically trivial coplanar states at low temperatures.

Although spontaneous quantum Hall effect has been exten-
sively discussed in the context of double-exchange or Kondo-
lattice models, most of these studies assume classical local-
ized moments to begin with. It is then natural to ask if this
phenomenon survives for models that incorporate quantum
spin fluctuations. Our analysis of the noncoplanar SDW or-
dering in Hubbard-like models provides a positive answer
to this important question. Possible material realizations of
the collinear SDW phase that hosts the topological Fermi
point include triangular compound Na0.5CoO2 [34] and doped
graphene [35].
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[10] T. T. Heikkilä and G. E. Volovik, JETP Lett.92, 681 (2010).
[11] Quadratic Fermi point with zero winding number is an acciden-

tal band crossing and can be removed by small perturbations
without breaking any symmetries.

[12] S. Uebelacker and C. Honerkamp, Phys. Rev. B84, 205122
(2011).

[13] Q. Liu, H. Yao, and T. Ma, Phys. Rev. B82, 045102 (2010); An
example in the Lieb lattice is discussed in W.-F. Tsai, C. Fang,
H. Yao, J. Hu, arXiv:1112.5789.
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