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Abstract

The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of

physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids

in porous media. To a good approximation the matrices can be modeled as a collection of spatially

frozen particles. In this work we consider the effect of polydispersity (in size) of the matrix particles

on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea

of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a

given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity.

We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant,

D, follows a scaling relation D ∼ (φc−φm)µ−β for all values of the polydispersity, where φm is the

area fraction and φc is the value of φm at the percolation threshold.

PACS numbers:
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The dynamics of tracers in disordered materials is of fundamental importance, and finds

applications in a number of areas such as crowding effects in biophysics, the dynamics of

fluids in porous media, and the diffusion of tracers in glasses. In most of these applications

the matrix is structurally heterogeneous. Cell membranes, for example, contain many dif-

ferent types of large integral membrane proteins1 of different sizes that act as obstacles to

diffusing proteins and lipid molecules. There have been extensive studies on the diffusion of

tracers in a sea of fixed obstacles but most have considered obstacles of uniform size2–6. In

this Letter we consider the important case of polydisperse obstacles.

Polydispersity is ubiquitous in chemical and biological systems and is thought to play an

important role in colloid physics,7–9 granular materials,10,11 and in cytoplasm mimics12,13.

Although the presence of polydispersity is acknowledged, its impact on the tracer dynamics

has not been systematically explored. In this work, we illustrate that the polydispersity can

change the protein dynamics in a qualitative way even for the same area fraction and the

same average size of macromolecules. We also show using percolation theory and the spatial

tessellation that such seemingly different protein dynamics follows the same scaling relation.

The diffusion of proteins in cell membranes is significantly slower, by orders of magni-

tude, than in homogeneous lipid bilayers. The mean-square displacement, W (t), of proteins

often shows anomalous sub-diffusive behavior, i.e., W (t) ∼ tα with time exponent α < 1.

Experiments2,5 using single particle tracking (SPT), fluorescence photobleaching recovery

(FPR), and fluorescence correlation spectroscopy (FCS) techniques revealed that values of

α ranged from 0.1 to 0.9 depending on the type of cells.

A qualitative understanding of the observed behavior is available. In cell membranes,

cholesterol rich lipid domains and temporarily static proteins bound to cytoskeletons can be-

come obstacles to protein diffusion. When the area fraction (φm) of such obstacles increases

beyond a critical value, called pore percolation threshold area fraction (φc), percolating free

area disappears and the proteins are confined in local pore space. For φm < φc, at short

times the proteins do random walks in a fractal space and show anomalous sub-diffusion but

recover the normal diffusive behavior at long times. At the percolation threshold (φm = φc),

proteins show sub-diffusion at all length- and time-scales.

The dynamics of proteins near the percolation threshold can be described by scaling

relations.14–23 Diffusion coefficients D of tracers in a percolating free area scale as D ∼

(φc−φm)µ−β where µ and β are scaling exponents. The mean-square displacement W (t) also
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follows a scaling relation, i.e., W (t) ∼ t2/dwg((φc−φm)t1/(2ν+µ−β)) where dw = 2 + (µ−β)/ν

and ν is the universal scaling exponent for the correlation length ξ (ξ ∼ |φc − φm|−ν). g(x)

is a scaling function given by g(x) = xµ−β for x → ∞, g(x) = constant for x → 0, and

g(x) = (−x)−2ν for x→ −∞. Determining the value of φc and the exponents is not trivial,

especially for polydisperse systems, and is the subject of this work.

We study the dynamics of hard discs of diameter σ (which is our unit of length) in a two-

dimensional space containing size polydisperse hard disc obstacles. The average diameter

of obstacles, σm, is fixed at σm = σ. The simulation cell is a square of side length L with

periodic boundary conditions in all directions. The number of obstacles (Nm) ranges from

12606 to 27303 and L ranges from 50 to 300. The obstacle area fraction (φm) ranges from

0.12 to 0.31. The polydispersity index is defined as
∑
d2 Pd

{
∑
d Pd}2

, where d is the diameter of the

obstacle and Pd is the probability of finding an obstacle with diameter d.

Initial configurations of the matrix are created by inserting obstacle discs at random

locations so that they do not overlap with existing discs. The size of each inserted obstacle

disc is sampled from a Gaussian distribution with mean σ and standard deviation δm = 0,

0.5, and 1. Obstacles with diameter less than 0.1 are excluded from the configuration and

the diameters of all discs are re-scaled so that the average diameter is σ. For δm = 0.5 and

1, the polydispersity indices of rescaled discs are 1.66 and 2.15, respectively.

A small number (up to 573) of fluid particles are then inserted so that the fluid area

fraction is 0.005. The fluid-fluid interactions are not significant but having more than one

fluid particle results in better statistics. The fluid particles are inserted in a percolating

region of the matrix so that there is no overlap with the matrix or other fluid particles.

(We obtain percolating regions using the Apollonius diagrams discussed shortly.) If no

percolating region is present the fluid particles are inserted at random locations.

Tracer dynamics is obtained using discontinuous molecular dynamics (DMD) simulations.

DMD simulations employ an event-driven algorithm and evolve the system via successive

collisions.24 Hydrodynamic interactions are ignored in DMD and the dynamics is ballistic

between collisions. Recent simulations25 have shown, however, that the long time behavior

is not affected by the short time dynamics. We use DMD because it is more efficient than

Brownian dynamics or Monte Carlo simulations. For the diffusion of tracers in 3D random

media identical results are obtained for the scaling exponents using either DMD or Monte

Carlo. The mean-square displacement, W (t)(≡ 〈|~ri(t)− ~ri(t = 0)|2〉), is averaged over 5 to
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10 configurations of the matrix, where ~ri(t) is the position vector of the ith fluid particle at

time t and 〈· · · 〉 denotes an ensemble average over both fluid and obstacle configurations.

There are three regimes in tracer dynamics as the obstacle area fraction is increased. For

low values of φm the mean-square displacement, W (t), is linear in time, t, i.e., the diffusion

is normal. For very high values of φm the tracers are confined in non-percolating regions

and W (t) ∼ t0 for long times. For intermediate times, W (t) ∼ tα over the time-scale of the

simulation with 0 < α < 1, i.e., the tracers exhibit anomalous diffusion. These regimes are

found for all the matrices studied, i.e., mono-disperse, and poly-disperse with δm=0.5 and

1.

For a given area fraction the tracers can exhibit qualitatively different dynamics in the

different types of matrices. Figure 1 depicts W (t)/4 as a function of time for the three types

of matrices, and for φm=0.24. For this matrix area fraction the tracers are confined in the

mono-disperse matrix, show anomalous diffusion in the polydisperse matrix with δm=0.5,

and normal diffusion in the polydisperse matrix with δm=1. The inset shows the apparent

exponent α as a function of φm for the three matrices. The three regimes are apparent in

this plot. The apparent exponent α drops continuously from 1 to its value at the percolation

threshold as φm increases.

We determine the percolation threshold by mapping the system onto an effective curvi-

linear lattice. This is done by constructing an Apollonius diagram, where space is tessellated

into many non-overlapping space-filling curvilinear polygons each of which contains one ob-

stacle (see Figure 2). Any point in space belongs to a curvilinear polygon of an obstacle if

and only if the obstacle is the closest one to the point, i.e., |~x−~rmi|−Ami < |~x−~rmj|−Amj,

where ~x and ~rmi are the position vectors of the point and the obstacle, respectively, ~rmj is

the position vector of any other obstacle and Ami denotes the radius of the obstacle. The

vertex in each polygon is defined as the point that is equidistant from the perimeter of the

three neighboring obstacles, i.e., the center of the circle that is tangent to these obstacles.

The circle is defined as a pore and its diameter is the pore diameter (σp). The curvilinear

edge between two pores (vertices) is a hyperbola with two foci located at the centers of two

obstacles that two pores share.(Figure 2(b))

The connectivity of the diagram is assigned by considering the possibility of solute

passage.4 When it is possible for a solute to go directly from one pore to a neighboring

pore along an edge, the edge is considered to be connected, and disconnected otherwise.
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FIG. 1: The mean-square displacement, W (t), as a function of time for δm=0 (monodisperse

matrix), 0.5, and 1, for φm = 0.24. The inset shows the apparent exponent α in W (t) ∼ tα as a

function of φm.

The edge width, w, is defined as shortest distance between the perimeters of two obstacles,

i.e., w ≡ |~rm1−~rm2|−Am1−Am2, where ~rm1 and ~rm2 are the positions of two of the obstacles

that define a pore, and Am1 and Am2 are the corresponding radii. When w is smaller than

the diameter (σ) of a solute (or tracer) the solute can not take the path and the edge is

considered disconnected; otherwise it is determined to be connected. A cluster is defined as

a set of vertices connected via at least one path and clusters of connected edges are searched

for via a recursive algorithm. A percolating pore cluster, if any, is located by considering

periodic boundary conditions. Under periodic boundary conditions, at least one vertex of a

percolating network should be connected to its mirror image via a path across a simulation

cell.

In order to obtain the pore percolation threshold area fraction φc, we estimate the

probability (P) that a system contains a percolating pore network by calculating the ra-

tio of the number of configurations with percolating networks to the number of all con-

figurations generated. In a thermodynamic limit P undergoes a discontinuous transition
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FIG. 2: (a) Apollonius diagram for a polydisperse medium with σm = 1, δm = 1, and φm = 0.22.

Larger obstacles are represented by darker disks. Green lines and yellow lines are connected and

disconnected edges, respectively. (b) Schematic of Apollonius tessellation. Shaded circles and open

circles represent obstacles and pores, respectively.

at φm = φc. For a finite system, we fit values of P to a hyperbolic tangent function

P (φm, L) = 1
2
(1+ tanh[(φc(L)−φm)/∆φ]), where φc(L) and ∆φ are fitting parameters. The

finite size effect on φc is well established with a scaling relation, i.e., φc(L) − φc ∼ L−1/ν .

Our values of φc(L) scales well with ν = 4/3 and the y-intercept of the graph φc(L) vs.

L−1/ν is identified with φc.

The percolation threshold area fraction increases with increasing polydispersity. In gen-

eral one would expect the percolation threshold to be higher with larger obstacles. However

even if φm and the average obstacle diameter are fixed, the free area available to solutes

increases as the polydispersity increases. This is because obstacles pack more efficiently in

polydisperse media than in monodisperse media, and the free area accessible to solutes there-

fore increases with increasing polydispersity. We find that the pore percolation threshold

area fractions φc = 0.21, 0.24, and 0.26 for δm=0, 0.5, and 1, respectively.

We investigate the scaling behaviors of diffusion coefficients (D) and the mean-square

displacements (W(t)). As depicted in the inset of Figure 3, D scales well as (φc − φm)µ−β

with µ−β ≈ 1.6 independent of δ. W (t)t−2/dw also collapse well with the same value of µ−β
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            µ
 0          1.57±0.15
 0.5       1.62±0.11
 1          1.57±0.14

 

 µ  = 1.57           

FIG. 3: The scaling function W (t)t−2/dw as a function of t(φc − φm)2ν+µ−β for various values of

φm for δm=1. In the inset is the log-log plot of diffusion coefficients as a function of φc − φm for

all values of δm.

onto a curve as a function of t(φc−φm)2ν+µ−β. However, our simulation results for µ−β ≈ 1.6

deviate from the value (1.17) for lattice systems. Recent theoretical and simulation studies

for a two-dimensional Lorentz model suggested that even though the non-universality of the

transport exponent µ−β might originate from a sufficiently strong power-law singularity of

the transition rate distribution between pores in three dimensions, narrow gaps responsible

for the singularity would not be relevant in two dimensions and the transport exponent for

lattices should be recovered.18,19,21,23

We cannot conclusively determine whether the exponent µ-β is universal, but our analysis

suggests this is the case if the system is ergodic. In order to investigate whether the transport

exponent µ − β is universal, we estimate the transition rate (W) between two pores and

its distribution (ρ(W )).17,22 If a tracer can collide many times with the three obstacles

defining its pore before transitioning to a neighboring pore, and there is no correlation

between the tracer entering and leaving the pore, one can invoke the ergodic hypothesis,

7



         

FIG. 4: The distributions of transition rate (W) for δm = 1 and different values of φm. The inset

shows the distributions of the expected number (η) of collisions per residence time of a tracer in a

pore for δm = 1.

and W ∼ (w−1)/A, where A is the area of the region available for the center of the tracer in

the pore and w is the edge width. As depicted in Figure 4, there is no singularity in ρ(W )’s

for δm = 1 for all values of φm, which implies that µ− β should be a universal exponent.

The ergodic hypothesis can be guaranteed only when the expected number (η ≡ π/(w1 +

w2 + w3 − 3)) of collisions per residence time of a tracer in a pore is large enough,26 where

wi(i = 1 ∼ 3) is the edge width of a given pore. In case of a periodic Lorentz gas, η should

be larger than 3.4. According to Machta and Zwanzig,26 diffusion coefficients from molecular

dynamics simulations were close to those from uncorrelated random walk models only for

η > 100. As shown in the inset of Figure 4, the peak position of the distribution (ρ(η)) of

η is far smaller than 3.4. The validity of the ergodic hypothesis is therefore questionable

for small η and consequently we cannot conclusively determine if the exponent µ − β is

universal.

In summary, we perform DMD simulations and spatial tessellation to investigate the

effect of polydispersity in obstacle size on the solute diffusion. The solute diffusion can be
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influenced significantly by the polydispersity because both the pore size distribution and

the pore connectivity change significantly with the polydispersity, thus changing the pore

percolation behavior of media. As the polydispersity index increases from 1 to 2.15, the pore

percolation threshold area fraction increases by about 24%. Therefore, the solute diffusion

may show all of normal, sub-diffusive, and confined dynamics behaviors depending solely

on the polydispersity. This implies that the polydispersity in obstacle size should be an

important element in the analysis of the experiments on the protein diffusion and structural

heterogeneity in cell membranes. The spatial tessellation and DMD simulations employed

in this study can be easily extended to study the dynamics and the structural heterogeneity

in cell cytoplasms crowded with various macromolecules.
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