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An intriguing result of statistical mechanics is that a fiostler phase transition can be rounded by disorder
coupled to energy-like variables. In fact, even more iniirig is that the rounding may manifest itself as a
critical point, quantum or classical. In general, it is nobkn, however, what universality classes, if any,
such criticalities belong to. In order to shed light on thiestion we examine in detail the disordered three-
color Ashkin-Teller model by Monte Carlo methods. Extemsanalyses indicate that the critical exponents
define a new universality class. We show that the roundingheffirst-order transition of the pure model
due to the impurities is manifested as criticality. Howewbe magnetization critical exponent, and the
correlation length critical exponent, are found to vary with disorder and the four-spin couplitrgrsgth, and
we conclusively rule out that the model belongs to the usaiéty class of the two-dimensional Ising model.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Rounding of first-order transitions due to disorder is an im-appears to be similar to thestate Potts model [9] in the
portant problem because such transitions are ubiquitous ipresence of disorder, where the magnetic exponent alsesvari
both classical and quantum systems. In contrast to the efwith q.
fect of disorder on continuous transitions, much less iskno ~ The Hamiltonian of theV-color AT model in2D is
about its effect on first-order transitions. Imry and Woftig
Hui and Berker [2], and Aizenman and Wehr [3] have made ~ H = — SN Tigsest—g > > ststslsl (1)
important contributions to this subject. o (i,5) a#B (i)

More_ recently, the quantun‘v-col_or Ashkm-TeIIer (AT) here the classical spin variablgs = +1 reside on a square
model in one dimension was studied using both weak and_,.. . : . :

. : tice, and theV spins on a single lattice site are labeled by
strong disorder analyses [4] where evidence was presente . .
. . . o . a,f = 1,2,...,N. The sum is only over nearest neighbor
in favor of rounding of this transition into a quantum criti-

. : . . airs. In our stud = 3 and we only consider the case
cal point for N > 3. An important question that is unan- ?or > 0. The feyrjr\(])ma 3netic cou “ny constait; > 0
swered is the universality class of this transition. It was a g ' g Piing i

gued, however, that the physical picture is the same as s & random variable following a translation-invariantdoiy

random transverse-field Ising model for a limited parametePrObab"ItydIStrIbUtlon of the form:

regime. Even more recently, general and rigorous analyses A . .
have shown that disorder can indeednd a first-order quan- plJij] = S Z’ Wfth probab?I!tyl/z (2)
tum phase transition [5]. However, it is still unknown whze t J+ 5, with probability1/2.
possible universality classes are, or if rounding is notpdym
a smearing of the first-order transition instead of an enrerge ~ The magnetization of the system is
criticality. N

The phase transition in thpeire N-color AT model has been m = 1 KZ Ima|>] ’ (3)
studied for decades [6]. It is known that fFf > 3, the pure N =1

model undergoes a first-order phase transition in two dimen-

sions D). However, the corresponding disordered case igvhere the symmetry between spins of different colors is uti-
still far from being understood. Here, we address the critilized to increase accuracy. The angular brackets) denote
cality of the bond disordered classical three-color AT miodethe usual thermal Monte Carlo average, whereas the square
in 2D, a necessary prerequisite for understanding the corrdrackets|- - -] denote the quenched average over configura-
sponding quantum phase transition at zero temperature. Utiions with different{.J; ; }.

lizing the Monte Carlo method, we compute the critical ex- Close to a continuous transition, the magnetization
ponents for the magnetization and the localization leraytd, ~ scales as

show that the phase transition does not belong to the Isiing un

versality class, as previously suggested [7]. We also fiatl th m =L/ (xLl/V) (4)

the critical exponents vary with disorder and the four spin-c

pling strength. Previously a perturbative two-loop renakm wherem(-) is a universal function, and is the critical expo-
ization group calculation had hinted at a new strong-disord nent for the correlation length. The variable= (J — J.)/J.
fixed point [8]. That the Ising universality class does ndtho is the reduced coupling constant in temperature units.



There are two other quantities of interest that are useful iras a function of some inverse power of the system size. As
determining the nature of the phase transitions: the energgxpected, the extrapolated lines intersect the ordinaerae

cumulantV, and magnetic cumulanif,, [10, 11] given by nonzero finite value. This validates that the transitiores ar
all first-order forg < 0.18. Moreover, expecting the transi-
1 [(eh)] Voo—1— [(m*)] (5) tion point to be close to the minimum of. for the largest
‘ 3[(e2)]* " 3[(m2))?’ examined size, we deduce the phase diagram of the pure AT

) . o Hamiltonian as shown in Fig. 1.
respectively, where = H/(NL?), H is the Hamiltonian

given by Eq. (1), and. is the linear dimension of the square

lattice. For a continuous transition, the cumul&pt has the 0'21 ' ' ' '
scaling form °
0.16 | ° .
Vip = Vin (xLl/") : (6) . .
(] Disordered phase

Using V. we can determine the order of the phase transition. _ 012 1 ..
In a continuous phase transitiolf, — 2/3V J asL — oo, '.
whereas in a first-order phase transitidf,behaves like the 0.08 - Ordered phase 0. N
continuous casexcept at J = J., whereV, approaches a °
non-universal constant. 0.04 L R, i

To apply the cluster Monte Carlo algorithm to our system, 0.
we fix a color A and rewrite the Hamiltonian in Eq. (1) to ! ! ! L
obtain 0.1 0.2 0.3 0.4 0.5

_ay A A
H="Hz— Z Jij+yg Z sis5 | si'sj M FG. 1 (Color online) Phase diagram @tersus.J with A = 0 for

(i,5) azA N = 3. For any values of < 0.18, the system undergoes a first-
a4 Z E ®) order phase transition. The error bars are smaller tharizbe&the
=M i, symbols used in the plot.

(1,9)

whereH ; repreAsents the terms which do not include spins of Now we study the disordered system for the parameter set
color A, and E; is the bond energy for the bond between (9,A) = (0.1,0.2) and usé/,, shown in Fig. 2, to find the or-
sites: andj in color A. This expression can be viewed as der of the transition. Plotting the depth Bf againstl / L3/

a random Ising model Hamiltonian with equivalent nearest{Fig. 3), we observe that* — 2/3 asL — oo, which indi-

neighbor coupling constant ; + g3, 4 sis7 ifonly color  cates that the transition is continuous.
Ais considered. Therefore, any clusteralgorithms for the ra

dom Ising model can be adopted here. For the following cal- 068

culation, the algorithm proposed by Niedermayer [12] idluse ' '
Note that the bond energy is bounded from above by
A osephobatasazig. FEE
Emax=J + = + (N — 1)g. 9) I BRIt
2 . B e é T. *
The equilibration time for all observables are found by log- >*  0.64 |, i v B ef N i % * .
arithmic binning. We perform one million Monte Carlo steps * 8 . ° g
for equilibration. Furthermore, we perfori), 000 thermal - SRR ek~ S
averages over each disordered configuration. The number of 062 . L L=40 5
disorder averages used for each observable varies ancis giv Faas” 'I: - gg o
in the caption of the plots. - . L=64 o
Becaus_e aI_I temperatures are simulated with the same dis- 0.224 0228 0232 0.236
order realization, the measured data are correlated. fidrere J
in order to obtain the error for the cumulants, we have agplie
the Jacknife procedure to correct for bias [13]. FIG. 2. (Color online) The energy cumulaht versus.J with

First, we must identify the parameter regime in which the(y, A) = (0.1,0.2) for N = 3. The measured values are averaged
pure system undergoes a first-order transition by looking abver15, 000 configurationsV. approaches the valid'3 for all J in
the phase space of the pure AT Hamiltonian. For fixed valthe continuous phase transition case and eventually bexdffidor
ues ofg, we calculaté/, for system size€ = 24,32, ..., 64. infinite system size. The error bars are hardly visible bseabhey
The first-order transition is confirmed by mspectmg how the2'® smaller than the symbols.
depth of the energy cumularg/3 — V*[.J.(L), L], changes
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FIG. 5. (Color online) Logarithmic derivative of magnetipa

. . . dlog(m)/dJ versusJ with (¢,A) = (0.1,0.2) for N = 3. The
. 3/4 : ,
FIG. 3. (Color online)(2/3 — V" (Jc(L), L)) versusl/L¥ " with 055 red values are averaged @@r000 configurations. The in-

(9:A) = (0.1,0.2) for N = 3. The line goes through the origin 4o section point is at. — 0.2328 -+ 0.0003. The error bars are
indicating a second-order phase transition. The errordrasmaller hardly visible because they are smaller than the symbols.

than the size of the symbols used in the plot.

07 T T T T T
We use the scaling propertiesdf, in Eg. (6), and the log-
arithmic derivative of the magnetization squared to findan a
curate estimate of the transition poiit. Figures 4 and 5 ‘MJ
show that the two quantities are independent of the system = B
size at a single critical pointj. = 0.2331 &+ 0.0006. £ o6l J
0.68 . . . . . L=32 —F—
L=28 —o—
L=24 —A— ]
) L=20 —5
0.64 = o5 L =18 . . !
0.02 004 008 0.6 032
X L1/v
£ 06
g FIG. 6. (Color online) Finite size scaling plot of the madoetu-
0.56 LoJo—— mulant with (g, A) = (0.1,0.2) for N = 3, J. = 0.2335, and
| L=24 —B— v = 0.76. The upper branch corresponds to the ordered phase
) L=28 whereas the lower branch corresponds to the disordere@ pfias
0.52 ! ! ! L=3%2¢ error bars are hardly visible because they are smaller thasym-
0.232 0.2325 0.233 0.2335 0.234 0.2345 0.235 bols.
J
FIG. 4. (Color online) Magnetic cumularit;, versus.J with particular set of paramete(s, A). In this regard, we repeat

(9,A) = (0.1,0.2) for N = 3. The measured values are av- our calculation for the parameter s¢ts A) = (0.05,0.20)

eraged over49, 000 configurations. The intersection point is at and (0.10,0.10). Table | summarizes the values mfand

Je = 0.2334 £ 0.0003. The error bars are hardly visible because for each parameter set; see also Fig. 8.

they are smaller than the symbols. Based on our results, the disordered three-color AT model

does not belong to the Ising universality class. One is tethpt

From the scaling behavior df,, in Eq. (6), we deduce the to conclude that reducing the coupling consiahéas no effect

critical exponentr. The best data collapse is obtained with on the exponent (at least within the error bars) but results in

J. = 0.2335 £ 0.0001 andv = 0.76 + 0.05, see Fig. 6. an increase in the exponefit On the other hand, reducing

Furthermore, the critical exponentsandr can be extracted the disorderA has a lesser impact on the expongnbut it

from Eqg. (4). As shown in Fig. 7, the magnetization scalesesults in smaller.

well with » = 0.70 + 0.02 and = 0.055 + 0.005. The results, when taken at face value, seem to violate the
To address the universality of the exponents, it is impartanboundr > 2/D [14]. The value ofv is extremely sensitive

to study the behavior of the system for more than just onéo .J.: it is remarkable that a variation of. from 0.2334 to
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FIG. 7. (Color online) Finite size scaling plot of the magnat
tion with (¢,A) = (0.1,0.2) for N = 3, J. = 0.2334, and
B/v =~ 0.07. The magnetization values are averaged dwei000
configurations. The upper branch corresponds to the ordqerase
whereas the lower branch corresponds to the disordere@ pfiag
error bars are hardly visible because they are smaller tiasym-
bols.

(3, A)[(0.10, 0.20) [(0.05,0.20) [(0.10,0.10)
Vi |v=076L005 |r=071+£001 |v=059+0.04
m  |r=070%£002 |r=079%£002 |v=053%0.01

B =0.055 £ 0.005 |3 = 0.080 £ 0.005 | 3 = 0.060 £ 0.007

TABLE |. The values of critical exponents extracted by firgiee
scaling of magnetic cumulant and magnetization for difieralues
of coupling constants and disorder.
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FIG. 8. (Color online) Finite size scaling plot of the madoetu-
mulant with (¢, A) = (0.1,0.1) for N = 3, J. = 0.2436, and

4

ponents from Eq. (4). The spread of is in the range of
0.05 to 0.06 which is considerably smaller than the Ising ex-
ponentl /8. Another striking fact is that the critical exponents
£ andv vary as the coupling parameteror the disordered
strengthA is altered. Similar behavior has been previously
reported in studies of the critical behavior of tistates Potts
model [15], where the magnetic exponent varies continyousl
with ¢ > 4. Interestingly, in the very same studies the bound
v > 2/D was violated, as in our present analysis. Violations
of the boundr > 2/D have also been observed before in
experiments [16] and simulations [17], and a theoreticad di
cussion and explanation of such violations has been given in
Ref. [18].

It is worth mentioning that we have also examined the
finite-size scaling of the correlation lengghextracted from
the second moment correlation function [19]

1 k-(Ri—R;
S(k) = 13 ) "R (5,5;)% (10)

]

The correlation length scales &sL = & (xL'/¥) for a con-
tinuous transition. Although preliminary results foare sim-

ilar, the larger system sizes are much harder to achieve with
our limited computation time, since the sum in Eqg. (10) is to
be performed over all lattice points. Multifractality ofgleor-
relation function, as seen in a random bond Potts model [9]
may also be present here and may be another difficulty in ex-
tracting reliable results, but has not been further ingeséd.
Multifractality may also be connected to the violation oéth
boundr > 2/D.

In summary, although precise values of the exponents are
difficult to establish, the emergence of criticality indddsy
disorder in the pure AT model faN = 3 (and presumably
for N > 3 as well) is manifest and the presence of a sin-
gle universality class (such as Ising) appears to be exdlude
Further analytical and numerical studies of the correspand
guantum version [4] remain to be conducted.
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Note added: After our paper was submitted an interesting
paper was posted by F. Hrahsheh, J. A. Hoyos, and T. Vojta,
arXiv:1208.0471.

v = 0.56. The upper branch corresponds to the ordered phase

whereas the lower branch corresponds to the disordere@ pfiags
error bars are hardly visible because they are smaller tiasym-
bols.

0.2336 can change from 0.71 to 0.81. In contrast, the same
variation of.J, results in a much weaker variation of the ex-
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