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An intriguing result of statistical mechanics is that a first-order phase transition can be rounded by disorder
coupled to energy-like variables. In fact, even more intriguing is that the rounding may manifest itself as a
critical point, quantum or classical. In general, it is not known, however, what universality classes, if any,
such criticalities belong to. In order to shed light on this question we examine in detail the disordered three-
color Ashkin-Teller model by Monte Carlo methods. Extensive analyses indicate that the critical exponents
define a new universality class. We show that the rounding of the first-order transition of the pure model
due to the impurities is manifested as criticality. However, the magnetization critical exponent,β, and the
correlation length critical exponent,ν, are found to vary with disorder and the four-spin coupling strength, and
we conclusively rule out that the model belongs to the universality class of the two-dimensional Ising model.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Rounding of first-order transitions due to disorder is an im-
portant problem because such transitions are ubiquitous in
both classical and quantum systems. In contrast to the ef-
fect of disorder on continuous transitions, much less is known
about its effect on first-order transitions. Imry and Wortis[1],
Hui and Berker [2], and Aizenman and Wehr [3] have made
important contributions to this subject.

More recently, the quantumN -color Ashkin-Teller (AT)
model in one dimension was studied using both weak and
strong disorder analyses [4] where evidence was presented
in favor of rounding of this transition into a quantum criti-
cal point forN ≥ 3. An important question that is unan-
swered is the universality class of this transition. It was ar-
gued, however, that the physical picture is the same as the
random transverse-field Ising model for a limited parameter
regime. Even more recently, general and rigorous analyses
have shown that disorder can indeedround a first-order quan-
tum phase transition [5]. However, it is still unknown what the
possible universality classes are, or if rounding is not simply
a smearing of the first-order transition instead of an emergent
criticality.

The phase transition in thepureN -color AT model has been
studied for decades [6]. It is known that forN ≥ 3, the pure
model undergoes a first-order phase transition in two dimen-
sions (2D). However, the corresponding disordered case is
still far from being understood. Here, we address the criti-
cality of the bond disordered classical three-color AT model
in 2D, a necessary prerequisite for understanding the corre-
sponding quantum phase transition at zero temperature. Uti-
lizing the Monte Carlo method, we compute the critical ex-
ponents for the magnetization and the localization length,and
show that the phase transition does not belong to the Ising uni-
versality class, as previously suggested [7]. We also find that
the critical exponents vary with disorder and the four spin cou-
pling strength. Previously a perturbative two-loop renormal-
ization group calculation had hinted at a new strong-disorder
fixed point [8]. That the Ising universality class does not hold

appears to be similar to theq-state Potts model [9] in the
presence of disorder, where the magnetic exponent also varies
with q.

The Hamiltonian of theN -color AT model in2D is

H = −
∑

α

∑

〈i,j〉

Ji,js
α
i s

α
j − g

∑

α6=β

∑

〈i,j〉

sαi s
α
j s

β
i s

β
j , (1)

where the classical spin variablessαi = ±1 reside on a square
lattice, and theN spins on a single lattice site are labeled by
α, β = 1, 2, . . . , N . The sum is only over nearest neighbor
pairs. In our study,N = 3 and we only consider the case
for g > 0. The ferromagnetic coupling constantJi,j > 0
is a random variable following a translation-invariant binary
probability distribution of the form:

p[Ji,j ] =

{
J − ∆

2 , with probability1/2

J + ∆
2 , with probability1/2.

(2)

The magnetization of the system is

m =
1

N

[〈
N∑

α=1

|mα|

〉]
, (3)

where the symmetry between spins of different colors is uti-
lized to increase accuracy. The angular brackets〈· · · 〉 denote
the usual thermal Monte Carlo average, whereas the square
brackets[· · · ] denote the quenched average over configura-
tions with different{Ji,j}.

Close to a continuous transition, the magnetizationm
scales as

m = L−β/νm̃
(
xL1/ν

)
(4)

wherem̃(·) is a universal function, andν is the critical expo-
nent for the correlation length. The variablex = (J − Jc)/Jc
is the reduced coupling constant in temperature units.
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There are two other quantities of interest that are useful in
determining the nature of the phase transitions: the energy
cumulantVǫ and magnetic cumulantVm [10, 11] given by

Vǫ = 1−

[〈
ǫ4
〉]

3 [〈ǫ2〉]
2 , Vm = 1−

[〈
m4

〉]

3 [〈m2〉]
2 , (5)

respectively, whereǫ = H/(NL2), H is the Hamiltonian
given by Eq. (1), andL is the linear dimension of the square
lattice. For a continuous transition, the cumulantVm has the
scaling form

Vm = Ṽm

(
xL1/ν

)
. (6)

UsingVǫ we can determine the order of the phase transition.
In a continuous phase transition,Vǫ → 2/3 ∀ J asL → ∞,
whereas in a first-order phase transition,Vǫ behaves like the
continuous caseexcept at J = Jc, whereVǫ approaches a
non-universal constant.

To apply the cluster Monte Carlo algorithm to our system,
we fix a colorA and rewrite the Hamiltonian in Eq. (1) to
obtain

H = HĀ −
∑

〈i,j〉



Ji,j + g
∑

α6=A

sαi s
α
j



 sAi s
A
j (7)

= HĀ +
∑

〈i,j〉

EA
i,j , (8)

whereHĀ represents the terms which do not include spins of
color A, andEA

i,j is the bond energy for the bond between
sitesi and j in color A. This expression can be viewed as
a random Ising model Hamiltonian with equivalent nearest-
neighbor coupling constantJi,j + g

∑
α6=A sαi s

α
j if only color

A is considered. Therefore, any cluster algorithms for the ran-
dom Ising model can be adopted here. For the following cal-
culation, the algorithm proposed by Niedermayer [12] is used.
Note that the bond energy is bounded from above by

Emax = J +
∆

2
+ (N − 1)g. (9)

The equilibration time for all observables are found by log-
arithmic binning. We perform one million Monte Carlo steps
for equilibration. Furthermore, we perform10, 000 thermal
averages over each disordered configuration. The number of
disorder averages used for each observable varies and is given
in the caption of the plots.

Because all temperatures are simulated with the same dis-
order realization, the measured data are correlated. Therefore,
in order to obtain the error for the cumulants, we have applied
the Jacknife procedure to correct for bias [13].

First, we must identify the parameter regime in which the
pure system undergoes a first-order transition by looking at
the phase space of the pure AT Hamiltonian. For fixed val-
ues ofg, we calculateVǫ for system sizesL = 24, 32, . . . , 64.
The first-order transition is confirmed by inspecting how the
depth of the energy cumulant,2/3 − V ∗

ǫ [Jc(L), L], changes

as a function of some inverse power of the system size. As
expected, the extrapolated lines intersect the ordinate atsome
nonzero finite value. This validates that the transitions are
all first-order forg . 0.18. Moreover, expecting the transi-
tion point to be close to the minimum ofVǫ for the largest
examined size, we deduce the phase diagram of the pure AT
Hamiltonian as shown in Fig. 1.
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FIG. 1. (Color online) Phase diagram ofg versusJ with ∆ = 0 for
N = 3. For any values ofg . 0.18, the system undergoes a first-
order phase transition. The error bars are smaller than the size of the
symbols used in the plot.

Now we study the disordered system for the parameter set
(g,∆) = (0.1, 0.2) and useVǫ, shown in Fig. 2, to find the or-
der of the transition. Plotting the depth ofVǫ against1/L3/4

(Fig. 3), we observe thatV ∗
ǫ → 2/3 asL → ∞, which indi-

cates that the transition is continuous.
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FIG. 2. (Color online) The energy cumulantVǫ versusJ with
(g,∆) = (0.1, 0.2) for N = 3. The measured values are averaged
over15, 000 configurations.Vǫ approaches the value2/3 for all J in
the continuous phase transition case and eventually becomes 2/3 for
infinite system size. The error bars are hardly visible because they
are smaller than the symbols.
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FIG. 3. (Color online)(2/3 − V ∗

ǫ (Jc(L), L)) versus1/L3/4 with
(g,∆) = (0.1, 0.2) for N = 3. The line goes through the origin
indicating a second-order phase transition. The error barsare smaller
than the size of the symbols used in the plot.

We use the scaling properties ofVm in Eq. (6), and the log-
arithmic derivative of the magnetization squared to find an ac-
curate estimate of the transition pointJc. Figures 4 and 5
show that the two quantities are independent of the system
size at a single critical point,Jc = 0.2331± 0.0006.
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FIG. 4. (Color online) Magnetic cumulantVm versusJ with
(g,∆) = (0.1, 0.2) for N = 3. The measured values are av-
eraged over49, 000 configurations. The intersection point is at
Jc = 0.2334 ± 0.0003. The error bars are hardly visible because
they are smaller than the symbols.

From the scaling behavior ofVm in Eq. (6), we deduce the
critical exponentν. The best data collapse is obtained with
Jc = 0.2335 ± 0.0001 and ν = 0.76 ± 0.05, see Fig. 6.
Furthermore, the critical exponentsβ andν can be extracted
from Eq. (4). As shown in Fig. 7, the magnetization scales
well with ν = 0.70± 0.02 andβ = 0.055± 0.005.

To address the universality of the exponents, it is important
to study the behavior of the system for more than just one
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FIG. 5. (Color online) Logarithmic derivative of magnetization
d log(m)/dJ versusJ with (g,∆) = (0.1, 0.2) for N = 3. The
measured values are averaged over20, 000 configurations. The in-
tersection point is atJc = 0.2328 ± 0.0003. The error bars are
hardly visible because they are smaller than the symbols.

 0.5

 0.6

 0.7

 0.02  0.04  0.08  0.16  0.32

V
m

x L
1/ν

L = 32

L = 28

L = 24

L = 20

L = 16

FIG. 6. (Color online) Finite size scaling plot of the magnetic cu-
mulant with (g,∆) = (0.1, 0.2) for N = 3, Jc = 0.2335, and
ν = 0.76. The upper branch corresponds to the ordered phase
whereas the lower branch corresponds to the disordered phase. The
error bars are hardly visible because they are smaller than the sym-
bols.

particular set of parameters(g,∆). In this regard, we repeat
our calculation for the parameter sets(g,∆) = (0.05, 0.20)
and(0.10, 0.10). Table I summarizes the values ofν andβ
for each parameter set; see also Fig. 8.

Based on our results, the disordered three-color AT model
does not belong to the Ising universality class. One is tempted
to conclude that reducing the coupling constantg has no effect
on the exponentν (at least within the error bars) but results in
an increase in the exponentβ. On the other hand, reducing
the disorder∆ has a lesser impact on the exponentβ, but it
results in smallerν.

The results, when taken at face value, seem to violate the
boundν ≥ 2/D [14]. The value ofν is extremely sensitive
to Jc: it is remarkable that a variation ofJc from 0.2334 to
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FIG. 7. (Color online) Finite size scaling plot of the magnetiza-
tion with (g,∆) = (0.1, 0.2) for N = 3, Jc = 0.2334, and
β/ν ≈ 0.07. The magnetization values are averaged over10, 000
configurations. The upper branch corresponds to the orderedphase
whereas the lower branch corresponds to the disordered phase. The
error bars are hardly visible because they are smaller than the sym-
bols.

(g,∆) (0.10, 0.20) (0.05, 0.20) (0.10, 0.10)

Vm ν = 0.76 ± 0.05 ν = 0.71 ± 0.01 ν = 0.59 ± 0.04
m ν = 0.70 ± 0.02 ν = 0.79 ± 0.02 ν = 0.53 ± 0.01

β = 0.055 ± 0.005 β = 0.080 ± 0.005 β = 0.060 ± 0.007

TABLE I. The values of critical exponents extracted by finite-size
scaling of magnetic cumulant and magnetization for different values
of coupling constants and disorder.

 0.4

 0.5

 0.6

 0.7

 0.01  0.1  1  10

V
m

x L
1/ν

L = 32

L = 28

L = 24

L = 20

FIG. 8. (Color online) Finite size scaling plot of the magnetic cu-
mulant with (g,∆) = (0.1, 0.1) for N = 3, Jc = 0.2436, and
ν = 0.56. The upper branch corresponds to the ordered phase
whereas the lower branch corresponds to the disordered phase. The
error bars are hardly visible because they are smaller than the sym-
bols.

0.2336 can changeν from 0.71 to 0.81. In contrast, the same
variation ofJc results in a much weaker variation of the ex-

ponentβ from Eq. (4). The spread ofβ is in the range of
0.05 to 0.06 which is considerably smaller than the Ising ex-
ponent1/8. Another striking fact is that the critical exponents
β andν vary as the coupling parameterg or the disordered
strength∆ is altered. Similar behavior has been previously
reported in studies of the critical behavior of theq-states Potts
model [15], where the magnetic exponent varies continuously
with q > 4. Interestingly, in the very same studies the bound
ν ≥ 2/D was violated, as in our present analysis. Violations
of the boundν ≥ 2/D have also been observed before in
experiments [16] and simulations [17], and a theoretical dis-
cussion and explanation of such violations has been given in
Ref. [18].

It is worth mentioning that we have also examined the
finite-size scaling of the correlation lengthξ extracted from
the second moment correlation function [19]

S(k) =
1

L2

∑

i,j

eik·(Ri−Rj)〈SiSj〉
2. (10)

The correlation length scales asξ/L = ξ̃
(
xL1/ν

)
for a con-

tinuous transition. Although preliminary results forν are sim-
ilar, the larger system sizes are much harder to achieve with
our limited computation time, since the sum in Eq. (10) is to
be performed over all lattice points. Multifractality of the cor-
relation function, as seen in a random bond Potts model [9]
may also be present here and may be another difficulty in ex-
tracting reliable results, but has not been further investigated.
Multifractality may also be connected to the violation of the
boundν ≥ 2/D.

In summary, although precise values of the exponents are
difficult to establish, the emergence of criticality induced by
disorder in the pure AT model forN = 3 (and presumably
for N > 3 as well) is manifest and the presence of a sin-
gle universality class (such as Ising) appears to be excluded.
Further analytical and numerical studies of the corresponding
quantum version [4] remain to be conducted.
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Note added: After our paper was submitted an interesting
paper was posted by F. Hrahsheh, J. A. Hoyos, and T. Vojta,
arXiv:1208.0471.
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