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Experimental validation of the two-plasmon-decay common-wave process

D. T. Michel,∗ A. V. Maximov, R. W. Short, S. X. Hu,

J. F. Myatt, W. Seka, A. A. Solodov, B. Yaakobi, and D. H. Froula
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14636

The energy in hot electrons produced by the two plasmon decay (TPD) instability, in planar
targets, is measured to be the same when driven by one or two laser beams and significantly reduced
with four for a constant overlapped intensity on the OMEGA EP. This is caused by multiple beams
sharing the same common electron-plasma wave. A model, consistent with the experimental results,
predicts that multiple laser beams can only drive a resonant common TPD electron-plasma wave
in the region of wavenumbers bisecting the beams. In this region, the gain is proportional to the
overlapped laser beam intensity.
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Direct-drive inertial confinement fusion requires multi-
ple overlapping laser beams that can then drive the two-
plasmon-decay (TPD) instability. TPD creates large-
amplitude electron plasma waves in the region near
quarter-critical density [1]. These plasma waves can
lead to anomalous absorption and hot-electron genera-
tion [2, 3] that can preheat the fusion fuel and reduce
the compression efficiency. Understanding the behavior
of TPD is critical to mitigating it in inertial confinement
fusion experiments.

The TPD instability consists of the decay of an elec-
tromagnetic wave into two electron-plasma waves [4, 5].
Phase matching, energy conservation, and the dispersion
relations of the waves limit the instability to a small re-
gion near the quarter-critical density. Stability calcula-
tions of a single-plane electromagnetic wave show that
the spatial growth rate of instability is proportional to
the quantity ILn/Te, where I is the laser beam intensity,
Ln is the plasma density scale length, and Te is the elec-
tron temperature of the plasma [6, 7]. When the insta-
bility is driven to nonlinear saturation, a broad spectrum
of large-amplitude plasma waves is generated [8] and can
accelerate electrons to high energies (∼ 100 keV) [9].

When multiple overlapping laser beams with polariza-
tion smoothing are used [10], the total energy in hot
electrons was shown to scale with the overlapped inten-
sity (IΣ), defined as the sum of the intensity of each
beam [11]. This scaling would not be expected if the
beams drive the TPD independently, according to the
single plane wave growth rates. A model is proposed
where different laser beams share a common-electron
wave [12].

This Letter describes the first experimental valida-
tion of the common-wave process [Fig. 1(a)] where the
total energy in hot electrons is measured to be simi-
lar when one or two polarized beams are used at the
same overlapped intensity and significantly reduced when
four beams with the same overlapped intensity are used.
A theoretical description of the common-wave process
shows that multiple laser beams can share an electron-
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FIG. 1: (a) Schematic of the common-wave region for two
beams: Two laser beam of wave vectors k0,1 and k0,2 share
the common-plasma wave kc located in the bisecting plane
fulfilling the necessary condition |kc − k0,1| = |kc − k0,2| inde-
pendent of the polarizations of the laser beams; (b) Schematic
of the seven common wave regions when four beams are used:
six two beam common-wave planes (red lines) and one four
beam common-wave line (green point).

plasma wave in the region bisecting the electromagnetic
wave vectors. In this region, the temporal growth rate
and convective gain of the dominant mode are propor-
tional to the overlapped intensity, a factor that depends
on the geometry, the polarization, and the relative inten-
sity of the laser beams.

The experiments were conducted on OMEGA EP [13],
where the four 351-nm beams are polarized vertically and
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intersect the target at an angle of 23◦ with respect to
the target normal [Fig. 1(b)]. The beams are spatially
overlapped to within 20 µm and used 2-ns flat-top laser
pulses that are co-timed to within 50 ps. Two sets of dis-
tributed phase plates [10] were used (890-µm diameter
for beams 1 and 2 and 840-µm diameter for beams 3 and
4) to produce an ∼ 1-mm-diam super-Gaussian inten-
sity distribution profile. A maximum single-beam energy
of 2 kJ (2.6 kJ) was used on beams 1 and 2 (3 and 4),
which provided a single-beam IMax = 1.6× 1014 W/cm2

(IMax = 2.4× 1014 W/cm2). The relative error in inten-
sities is dominated by the shot-to-shot power measure-
ments on each beam of less than 5%. This results in a
maximum error in overlapped intensity of 10%.

The laser beams illuminated a 30-µm-thick CH layer
deposited on 30 µm of Mo and backed with an addi-
tional 30 µm of CH. Hydrodynamic simulations using
the 2D code DRACO [14] indicate that the laser light in-
teracts with the first layer, producing a CH plasma with
density and temperature profiles that depends only on
the overlapped laser intensity. For the experimental con-
ditions presented here, the hydrodynamic profiles near
quarter-critical density reach a steady state after about
1.5 ns. After this time, the calculated quantity IΣ,qLn/Te

varies by less than 10% where IΣ,q is the overlapped in-
tensity at the quarter-critical density. When the over-
lapped laser intensity is increased from 1.5×1014 W/cm2

to 7 × 1014 W/cm2, the density scale length (Ln) in-
creases from 260 µm to 360 µm, the electron tempera-
ture (Te) increases from 1.5 keV to 2.5 keV, and, due to
absorption, the laser intensity at quarter-critical density
is about equal to half of the vacuum intensity; the ratio
Ln/Te is nearly constant (≈ 160 µm/keV).

The x-ray spectrometer [15–17] is used to measure the
energy emitted into the Mo Kα emission line (EKα

) using
an absolutely calibrated planar LiF crystal spectrometer
that views the target from the laser incident side at an
angle of 63◦ from the target normal [17]. The hard x-
ray detector [18] measures the x-ray radiation generated
by the hot electrons in the Mo above ∼40 keV, ∼60 keV,
and ∼80 keV [18]. It allows the hot-electron temperature
to be estimated using the exponentially decreasing x-ray
energy in each channel. The relative error in the mea-
surement of the hot electron temperature is 20%. Monte
Carlo simulations using the code EGSnrc [19] are used
to determine the total hot-electron energy (Ee) given the
measured hot-electron temperature (Thot) and the total
energy in the Kα emission [17]. The relative error of
25% is dominated by measurement errors. Figure 2(a)
shows that the dependence of the hot-electron temper-
ature with the total energy in Kα is comparable when
using one beam, two beams or four beams.

Figure 2(b) shows that the total laser energy (El) con-
verted into hot electrons (fhot = Ee/El) as a function
of the overlapped intensity is similar when using one or
two beams in the horizontal, vertical, or diagonal con-
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FIG. 2: (a) The measured hot-electron temperature is plot-
ted as a function of the measured total energy in Kα for
the five laser-beam orientations tested. (b) The fraction of
laser energy converted to hot electrons (fhot) is plotted as
a function of the overlapped intensity. The four-beam hot
electron generation is estimated (open diamonds) by multi-
plying the measured two-beam total hot-electron energy frac-
tion by six and plotting the results at twice the two-beam
intensity. The dashed line is a fit to the four beam data
[fhot = 3 × 10−8e(8IΣ/2)]. The solid line is scaled from the
fit assuming the four beam results are dominated by the six
two beam common wave modes driven at half of the intensity
[fhot = 1× 10−8e(8IΣ)].

figuration and increases exponentially as a function of
the overlapped intensity. These results show that the
TPD growth is due to the interplay between the two
beams through a common-wave process. If the hot elec-
trons were generated by two independent single-beam
processes, each with an intensity of IΣ/2, the total hot-
electron energy would be the sum of the hot-electron en-
ergy generated by each beam. This would be significantly
smaller than the hot-electron energy generated by a sin-
gle beam with I = IΣ (due to the measured exponential
increase of the hot-electron energy with the laser inten-
sity). The fact that the two beams produce similar to-
tal hot-electron fraction as a single beam shows that the
common-wave process is very efficient.
When comparing the four-beam and single-beam re-

sults, Fig. 2(b) shows a significant decrease in the hot-
electron energy for a given overlapped intensity (up to
two orders of magnitude for IΣ ∼ 2×1014 W/cm2). This
reduction in the four beam experiments can be explained
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heuristically on the basis of the two beam experimental
results. The addition of the hot-electron fractions mea-
sured for six possible two beam configurations, plotted
at twice the overlapped intensity, is consistent with the
fraction of hot electrons measured when four beams are
employed; see open symbols in Fig. 2(b). This suggests
that the hot electrons generated by four beams are the
result of the sum of the hot electrons generated by six in-
dependent two-beam interactions; i.e., the hot-electrons
generated by the interaction between all four beams is
not dominant.

The well-known theory of TPD [4, 5] is based on the
dispersion relation for the two electron-plasma waves
with frequency and wave vectors (ω,k) and (ω − ω0,k−
k0), where ω0 and k0 are the frequency and wave vec-
tor of the initial electromagnetic wave [4, 5]. In the
case of multiple laser beams driving a common electron-
plasma wave (ωc,kc), the dispersion relation is ω2

c =
ω2
pe+3kc

2v2th,e and for the corresponding daughter waves

(ωc − ω0)
2 = ω2

pe + 3(kc − k0,i)
2v2th,e, where vth,e is the

electron thermal velocity, ωpe is the plasma frequency,
and k0,i (with a norm k0 independent of i) is the wave
vector of beam i. A mathematical definition for the re-
gion where a resonant common-wave process exists is
determined by satisfying the dispersion relations for all
laser beams, cos(kc,k0,i) = const, for i = 1...n. For a
two-beam configuration, this defines a plane in k-space
bisecting the wave vectors of the two laser beams [Fig.
1(a)]. For more than two laser beams, this condition
restricts the resonant common waves either to a line or
eliminates them, depending on the laser beam symme-
try. The four-beam growth rate in this experiment is
restricted to a line [Fig. 1(b)].

The dispersion relation for the common-wave process
is derived following the TPD linear theory [4, 5] for
the conditions where the collision frequency is much
smaller than the growth rate, satisfied for our experimen-

tal parameters: D (ωc, γ, |kc|) = −Σi
γ2

0,i

D(ωc−ω0,γ,|kc−k0,i|)
,

where γ is the temporal growth rate, D (ω, γ, |k|) =

{[1−
ω2

pe

ω2

(

1 + 3k2λ2
De

)

]ω2 + iγ} is the dispersion relation
and λDe =

vth,e

ωpe
is the Debye length. The single-beam ho-

mogeneous growth rate calculated in the common-wave

region is γ2
0,i =

(

γ2
0

)SB

Max
cos2 (αi) fcβi, where αi is the

angle between the polarization vector and the common-

wave vector, fc =
(

k2

c−(kc−k0,i)
2

k0,i|kc−k0,i|

)2

, βi = Ii
IΣ

, Ii is the

intensity of the laser beam i,
(

γ2
0

)SB

Max
= 2

cncme

(

k0

2

)2
IΣ

is the maximum single-beam homogeneous growth rate
squared calculated for the overlapped intensity, c is the

light velocity, me is the electron mass, nc =
meω

2

0

4πe2 is the
critical density, and e is the electron charge. To evaluate
the maximum value of the growth rate, the minimum
value of D(ω, γ, |kc − k0,i|) is determined by ensuring
that the dispersion relations for all daughter waves are

satisfied. It follows that D(ω, γ, |kc − k0,i|) = iγ = const
and the resonant common-wave growth rate is given by
(

γ2
0

)MB
= Σiγ

2
0,i. A geometric function is given by nor-

malizing the multiple-beam growth rate squared to the
maximum single-beam growth rate squared,

(

Γ2
0

)MB
=

(γ2

0)
MB

(γ2

0)
SB

Max

= fcΣi cos
2(αi)βi (1)

The dominant mode is determined by the maximum of
the geometric function which is a geometric factor (fg =
(

Γ2
0

)MB

Max
) that depends only on the geometry of the laser

beams, their polarizations, and their intensities relative
to the overlapped intensity.
Figure 3(a)-(b) shows the calculated geometric func-

tions for two beams [
(

Γ2
0

)2B
] polarized perpendicular

and parallel to the plane defined by the laser beams
(k0,1,k0,2). The geometric functions calculated in k-
space are significantly different as a result of the differ-
ence in the polarization vectors relative to the common-
wave plane, although the geometric factor is similar for

the two cases [
(

Γ2
0

)2B

Max
∼ 1]. The fact that the growth

rates are the same explains why the total hot-electron en-
ergy is measured to be similar in the horizontal and verti-
cal laser-beam configurations. For the configuration with
two horizontal beams [Fig. 3(a)], the geometric function
in the common-wave plane form two modified hyperbolas
defined by (ky/k0)

2 = (kx/k0) [(kx/k0) / cos(θ/2)
2 − 1],

where θ is the angle between the two laser beams. The
geometric function decreases rapidly with ky/k0, corre-
sponding to the rapid decrease of the single-beam growth
rates.
Figure 3(c) shows the four-beam geometric function

[
(

Γ2
0

)4B
] plotted along the four-beam common-wave re-

gion located along the line bisecting the laser beams [Fig.
1(b)]. The maximum value is reached for kx/k0 ∼ 1.3

and ky/k0 ∼ 0.3 where
(

Γ2
0

)4B

Max
= 0.5. For the same

overlapped intensity, the single-beam and two-beam ho-
mogeneous growth rates for the dominant mode are sim-

ilar [
(

Γ2
0

)2B

Max
= 1], whereas the four-beam homogeneous

growth rate for the dominant mode is decreased by a fac-

tor of 2 [
(

Γ2
0

)4B

Max
= 0.5]. These calculations support the

experimental findings [Fig. 2(b)] where the single and
two beam hot electron fractions are comparable, while
the four-beam hot electron fraction is smaller.
To estimate the common-wave convective gain (in

intensity), the maximum common-wave homogeneous
growth rate is used in the formalism derived in Refs. [6,

20], G = 16π
9

(

v2

th,e

c2

)−1

k0L[
(γ2

0)
MB

Max

ω0

]2. The maximum

common-wave gain for each configuration is,

Gc = 6× 10−2 IΣ,qLnλ0

Te
fg (2)
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FIG. 3: Calculation of
(

Γ2
0

)2B
in the common-wave plane

for (a) two beams polarized perpendicular and (b) paral-
lel to the plane (k0,1,k0,2). The dashed white lines corre-
spond to the Landau cutoff (kmaxλDe = 0.25 where kmax =
max[kc, |kc − k0,i|]) calculated for Te = 1.6 keV, which de-
fines the maximum wave vector for TPD [21]. The dashed
green lines correspond to the two modified hyperbolas of max-

imum
(

Γ2
0

)2B
. (c) Calculation of

(

Γ2
0

)4B
along the four-beam

common-wave line. kx is along the projection of k0,i in the
common wave region, ky is perpendicular to kx, k0 is calcu-
lated at quarter-critical density.

where Te is in keV, IΣ,q is in 1014 W/cm2, Ln is in µm,
and λ0 is in µm. For a given laser-beam configuration
(relative beam angle and polarization), the common-wave
gain is proportional to IΣ,qLn/Te.

Figure 4 shows the hot electron fraction as a function
of the calculated common-wave gain for the dominant
mode [Eq. (2)]. When there are multiple common-wave
regions, the dominant mode corresponds to the maximum
common-wave gain. For all laser beam configurations,
except for two diagonal beams, the hot electron fraction
as a function of the gain is similar. For diagonal beams,
the calculations underestimate the value of the gain.
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FIG. 4: The total hot electron energy divided by the laser
energy is plotted as a function of the common-wave gain (Gc)
for the dominant mode.

In summary, when maintaining the overlapped laser
beam intensity, the total energy in hot electrons is
measured to be similar when using one or two polar-
ized beams and significantly reduced with four polarized
beams. A linear common-wave model is consistent with
these observations. For ignition designs, these results
suggest that the common-wave process can be reduced
by limiting the number of beams that are symmetric to
one another or by reducing the geometric factor.
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