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Abstract
We present a systematic study of the proton spin structure in terms of measurable parton
distributions. For a transversely-polarized proton, we derive a polarization sum rule from the lead-
ing generalized parton distributions appearing in hard exclusive processes. For a longitudinally-
polarized proton, we obtain a helicity decomposition from well-known quark and gluon helicity
distributions and orbital angular-momentum contributions. The latter is shown to be related to
measurable subleading generalized parton distributions and quantum-phase space Wigner distri-

butions.



1. Introduction. Understanding the internal structure of the proton, its spin structure in
particular, has been a driving motive for intense activities in hadron physics in the last two
decades. Great progresses have been made from both experiment and theory sides. Studies of
deep-inelastic scattering (DIS) and related hard processes at the electron facilities at SLAC,
DESY, CERN, and Jefferson Lab, and of polarized proton-proton collisions at relativistic
heavy-ion collider (RHIC), have generated a large body of experimental data, revealing del-
icate roles of quarks and gluons in the proton spin. These developments have stimulated
theoretical advances from simple parton model description of the nucleon structure to multi-
dimension distributions of partons, including the generalized parton distributions (GPD’s),
the transverse momentum dependent parton distributions (TMD’s), and the quantum phase
space Wigner distributions. Together with the advances made in the lattice quantum chro-
modynamics (QCD), these developments have provided us not only deep insights for the
partonic structure of the nucleon, but also the great opportunities to study the strong in-
teraction physics, such as the QCD factorization for hard processes, and the universality of
the associated parton distributions. A recent summary on the experimental and theoretical
status can be found in [1].

One of the key developments in understanding the spin structure of the proton is the spin
sum rule derived by one of the authors [2], where the total contributions to the spin from
the quark and gluons can be measured through their GPDs separately [3]. The partonic
interpretation of this spin sum rule is, however, obscure. In particular, for a transversely
polarized proton, there appear conflicting partonic interpretations of the spin [4, 5]. For
longitudinal polarization, one can in principle deduce the quark orbital angular momentum
(OAM) by subtracting the quark helicity distribution. However, it has not been able to
identify a direct probe for the quark OAM in physical processes. Meanwhile, the relation
between the gauge-invariant quark OAM and the canonical OAM [6, 7] has been a confusing
issue in formulating a helicity sum rule with simple physical significance.

In this paper, we will address the above important questions by systematically seeking a
partonic interpretation of the proton spin and the experimental measurability of the relevant
distributions. We explain why a simple partonic sum rule exists only for the transverse
polarization. We find that the gauge-invariant OAM contribution to the proton helicity
is related to twist-two and three GPD’s which are measurable in hard exclusive processes.
Finally, the canonical OAM distribution in the light-cone gauge is related to a Wigner
distribution [8, 9], which is accessible through certain hard processes. Our discussions are
mainly focused on quarks, but they can be easily extended to gluons.

Our starting point is the matrix element of the QCD AM density M**# in the nucleon
plane-wave state [6]
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where £# is the space-time coordinates, P* and S* (S - P = 0, S? = —M?) are the four-
momentum and polarization of the nucleon, and J = 1/2 and M are the spin and mass,
respectively. The |« ... (] indicates antisymmetrization of the two indices. The above equa-
tion is fully Lorentz-covariant and can be specialized to any frame of references. To seek
the partonic interpretation, we consider the nucleon in the Infinite Momentum Frame(IMF')
along the z-direction and take y to be 4+ component [P = (P° + P%)/+/2]. Because of the
antisymmetry between o and [, the leading component of the angular momentum density



comes from o = + and § =1= (1,2). This is only possible if the nucleon is transversely
polarized (S, ) and the matrix element reduces to

3(Pt 2SJ_’
(PS] / d*EMTTHPS) = J {%] (2m)*6%(0) , (2)
where S+ = ¢ *1#S, with convention of €’'?* = 1. In the above equation, a factor of 2

comes from the first term in the bracket of Eq. (1), whereas the second term contributes to
a factor 1 because of the antisymmetric feature of indices a and .

The longitudinal polarization supports the matrix element of the next-to-leading AM
tensor component M 12,
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which has one PT-factor less. Thus the nucleon helicity J is a subleading light-cone quan-
tity, and a partonic interpretation will in general involve parton transverse-momentum and
correlations.

The above result is in contrary to the common intuition about the role of spin-1/2 particle
polarization in hard scattering processes: The polarization vector S* has the leading light-
cone component ST = P when the nucleon is longitudinally polarized, and the transverse
component S* is subleading in the IMF.

2. Transverse-polarization Sum Rule. According to Eq. (2), one expects a simple partonic
interpretation of the transverse proton polarization from the leading parton distributions.
Indeed, the quark AM sum-rule derived in terms of the quark distribution ¢(z) and GPD
E(z,0,0) is exactly of this type [2],

Jy = %Z/dzx lgi(x) + E;(2,0,0)] , (4)

where i sums over different flavor of quarks, and similarly for the gluon AM. We emphasize
that this spin sum rule is frame-independent. In Ref. [4], Burkardt has proposed an interest-
ing explanation of the above result in the impact parameter space, in which a transversely
polarized nucleon state fixed in the transverse plane generates a spatial asymmetric parton
density ¢(z, b)), which yields to the parton’s AM contribution to the transverse spin. Note
that the above sum rule is different from that of E. Leader [5], because the transverse angular
J1 does not commute with the Lorentz boost along the z-direction.

To attribute the above sum rule with a simple parton picture, one has to justify that
(x/2)(q(x) + E(x)) is the transverse AM density in z, i.e., it is just the contribution to the
transverse nucleon spin from partons with longitudinal momentum zP*. This can be done
easily. Define the quark longitudinal momentum density p*(x, £, S*) through
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where n is the conjugation vector associated with P: n = (07,n~,0,) withn- P =1. A
careful calculation shows that beside the usual momentum distribution, it has an additional
term
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where the ¢*-dependence comes from the slightly off-forward matrix element, which acts
like a “distribution” in mathematical sense: vanishing normally but non-zero when inte-
grated with some kernels. The parton contribution to the transverse polarization is just the
transverse-space moment of p*(z, &, S,
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where we have included the contribution from the energy-momentum component 7+
through Lorentz symmetry.

3. Helicity Sum Rule. Most of the experimental probes on the nucleon spin use the
longitudinal polarization, and thus it is natural to explore the nucleon helicity in parton
picture. Considering the z-component of the quark AM, we have !
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while the quark helicity is well-known to have a simple parton density interpretation. How-
ever, the quark OAM involves transverse component of the gluon field, and thus is related
to three-parton correlations.

Thus a partonic picture of the orbital contribution to the nucleon helicity necessarily
imwolves parton’s transverse momentum. In other words, TMD parton distributions are the
right objects for physical measurements and interpretation. In recent years, TMD’s and
novel effects associated with them have been explored extensively in both theory and exper-
iment [1]. An important theoretical issue related to them is gauge invariance. Whenever a
canonical momentum of color-charged particles appears, the gauge symmetry requires that
the gauge potential A" must be present simultaneously. This is already true when parton’s
longitudinal momentum distribution is considered: In factorization theorems for DIS, the
physical parton represents a gauge-invariant object with a gauge link extended from the
location of parton field to infinity along the conjugating light-cone direction n*,

vic(€) = P |exp (~ig [~ avi- a0 +9) | wie) )

where P indicates path ordering. Therefore, in perturbative diagrams, a parton with mo-
mentum kT = xPT represents in fact the sum of all diagrams with longitudinal gluons
involved.

When considering parton’s transverse momentum, we also need appropriate gauge links
formed of gauge potentials. The choice for the gauge links, however, is scattering-process
dependent [12]. As a consequence, there is no unique definition for the TMD’s. In practical
applications, two choices stand out. First one uses the same light-cone gauge link as shown
in the above. This choice does lead to light-cone singularities which must be addressed

1 'We notice recent research activities aiming at different decompositions of the nucleon spin [10], which we

will not address in this paper, (see also a recent comment on these developments [11]).



properly in actual calculations [13]. The second choice is a straightline gauge link along the
direction of spacetime position &,

Wps(E) = P [exp (—z'g | A(A&))} b(E) (10)

The link reduces to unity in Fock-Schwinger gauge, £+ A(§) = 0. The gauge invariant parton
fields W () are defined in the IMF which is the basis of partonic interpretation.

To investigate parton’s OAM contribution to the proton helicity, one also needs their
transverse coordinates. The most natural concept is a phase-space Wigner distribution,
which was first introduced in Ref. [14]. A Wigner distribution operator for quarks is defined
as

~
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where 7" is the quark phase-space position and k& the phase-space four-momentum, and W
follows the definitions of Eqs. (9,10). They represent the two different choices for the gauge
links associated with the quark distributions. Including the gauge links in Egs. (9,10) makes
the above definition gauge invariant. However, they do depend on the choice of the gauge
link [12], as we will show below. The Wigner distribution can be define as the expectation
value of W in the nucleon state,
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where the nucleon has definite helicity 1/2. The quark’s OAM distribution follows from the
intuition,

L(;L’) = /(EJ_ X ]ZJ_)W(.Z‘,EJ_, EJ_)dzgld2EJ_ s (13)

from partons with longitudinal momentum xzP™*.

For our purpose, the most appealing choice is Vg because it leads to a light-cone AM
density both calculable on lattice and measurable experimentally. To demonstrate this, we
need the Taylor expansion,

o
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It follows that
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The right-hand side is related to the matrix elements of twist-2 and twist-3 operators, which
are extractable from experimental data on twist-3 GPD’s [15, 17]. Because there is no
light-cone non-local operators involved, it can also be calculated in lattice QCD [18]. We
emphasize that Lrg(x) is not the same as the OAM density defined through the generalized
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AM density in Ref. [16]. The difference is a twist-three GPD contribution proportional to
the gluon field F++.

The total OAM sum rule in term of parton’s Wigner distribution,

(PS| [ @7 D(F)y* (7L x iD1)(7)| PS)
(PS|PS)

= /(EJ_ X EJ_)WFS(:E,EJ_, El)dxd2gj_d2lgj_ (16)

which gives a parton picture for the gauge-invariant OAM [2], although the straightline
gauge link destroys the straightforward parton density interpretation.

Other choices of gauge links yield different Wigner distributions and hence different par-
tonic OAM distributions L(x). However, so long the gauge link between [—£/2,¢/2] is
smoothly differentiable, Eq. (16) remains valid. This is one of the important virtue of the
gauge-invariant approach. However, for partons with the light-cone gauge link, W, the
above sum rule is invalid, as we shall see below.

4. Canonical Orbital Angular Momentum. The quark contribution to the canonical
orbital angular momentum was explored in Ref. [7],
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This definition represents the canonical OAM in the light-cone gauge AT = 0, and is not
gauge invariant. A gauge-dependent quantity is in principle not measurable experimentally.
However, sometimes one can fortunately find its gauge-invariant extension (GIE) physically
measurable. A GIE of a gauge-variant quantity is a fixed-gauge result gauge-invariantly
extrapolated to any other gauge. A GIE of the partial derivative in AT = 0 gauge is

.
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which is uniquely defined, and L~ ;- is the light-cone gauge link connecting {~ and 7.
One can plug this into Eq. (17) to obtain an GIE of [,(x) away from A" = 0. The covariant
derivative term is just what we have discussed before. The second term involves a non-local
operator along the light-cone, and has obscure physical meaning other than in the light-cone
gauge. Its matrix element is in principle related to the twist-three GPD’s [15], and an infinite
number of moments are involved due to non-locality. Therefore, we arrive at the interesting
conclusion that [,(x) in light-cone gauge is actually accessible through twist-two and three
GPD’s, which is consistent with what Hatta has concluded recently [9].

A clear parton picture emerges through connections between [,(x) and TMD’s and Wigner
distributions [8, 9]. One can introduce a Wigner distribution with the gauge link in the light-
cone direction, Wi (z, b 1, k 1). Integration over the impact parameter space f d2b Wi
generates quark-spin independent TMD’s. It can be shown that the canonical AM distri-
bution in AT = 0 gauge as defined in [7] can be obtained from the simple moment of a
gauge-invariant Wigner distribution,

l,(z) = / (by x kK O)Wie(z, b,k )d?b, %k, . (19)



From the discussion of the previous paragraph, this also implies constraints on the moments
of Wigner distributions from the GPD’s. Finally, the canonical OAM in light-cone gauge
acquires the simple parton sum rule in the quantum phase space [8, 9],

(PSR (P x i) PS)
(PS|PS)

= /(EJ_ X EJ_)WLC(.I,EJ_,El)dxd2gj_d2]gj_ . (20)
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The measurability of this Wigner distribution will be studied in a future publication [17].

5. Conclusion. To summarize, we explored systematically parton pictures for the proton
spin, and achieved a number of important results. For the transverse polarization, we found
that it is simple to interpret in terms of parton AM density measurable through twist-
two GPD’s. For the nucleon helicity, the gauge-invariant parton picture can be probed
through twist-two and three GPDs, and also calculable in lattice QCD. A simpler parton
picture in the light-cone gauge can be established through the quantum phase sapce Wigner
distribution, and can be measured through either twist-two and three GPD’s or directly
from Wigner distribution. These results will stimulate further theoretical developments and
generate experimental interests to measure, particularly, the parton OAM in hard scattering
processes. Phenomenological studies will be presented elsewhere.
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