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We provide the first evidence for a holographic correspondence between a gravitational theory in
flat space and a specific unitary field theory in one dimension lower. The gravitational theory is a
flat-space limit of topologically massive gravity in three dimensions at Chern–Simons level k = 1.
The field theory is a chiral two-dimensional conformal field theory with central charge c = 24.
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One of the main pillars of our contemporary under-
standing of quantum gravity is the holographic principle
[1]. It states that a quantum theory of gravity in d+1 di-
mensions should have an equivalent description in terms
of an ordinary unitary quantum (field) theory without
gravity in d dimensions.

The holographic principle had no concrete realiza-
tion until Maldacena’s seminal work on the Anti-
deSitter/Conformal Field Theory (AdS/CFT) correspon-
dence [2], which established that string theory in AdS
incorporates the holographic principle in a specific way.
In order to understand holography better and for ob-
vious practical purposes, one would like to formulate
AdS/CFT-like scenarios in asymptotically flat space-
times. This is the main purpose of our letter.

Even though progress has been achieved on various
fronts in order to extract features of the flat space S-
matrix from AdS/CFT correlators, see e.g. [3], it is fair
to say that efforts at flat-space holography have not met
with a great deal of success. This is somewhat surprising,
given that flat spaces can be obtained as a large radius
limit of AdS [31]. One could expect that holography for
flat spaces should arise as a similar limit of the usual
holographic dictionary in AdS.

A first concrete indication of the AdS/CFT correspon-
dence is the observation by Brown and Henneaux that the
asymptotic symmetry group (ASG) of three-dimensional
Anti-de Sitter space (AdS3) consists in two copies of a Vi-
rasoro algebra with non-trivial central charges [4]. This
hinted at the statement that any theory of quantum grav-
ity with AdS3 boundary conditions is a 2d CFT [5]. In
flat space-times, the asymptotic symmetry group is the
infinite dimensional Bondi–Metzner–Sachs (BMS) group
[6]. It is therefore natural to expect this group to play a
crucial role in flat space holography.

In pure Einstein gravity in three dimensions, it was
observed that the asymptotic algebra picks up central
extensions [8]. It turns out that the BMS3 algebra [7] is
related to the conformal algebra through a redefinition of
generators and taking the cosmological constant to zero

[8–10]. Also, the general asymptotically flat solution to
Einstein gravity could be obtained as a limit of the gen-
eral solution in AdS3 [11, 12]. From the field theory point
of view, it was shown that the limit of large AdS radius
is perceived as a contraction on the dual CFT [9, 10]. So,
if we believe that quantum gravity on AdS is dual to a
CFT, the structure of the field theory dual for flat-space
would be given by a contraction of a CFT. Interestingly,
these contracted CFTs were studied earlier in the context
of non-relativistic limits of CFTs and are called Galilean
conformal algebras (GCA) [13]. This intriguing connec-
tion was dubbed the BMS/GCA correspondence [9].

So far the best understood example of this connection
is in three bulk dimensions. There the centrally extended
BMS (or GCA) algebra is generated by Virasoro genera-
tors Ln and supertranslations Mn (with integer n).

[Lm, Ln] = (m− n)Ln+m +
c1
12

(n3 − n) δn+m,0 (1a)

[Lm, Mn] = (m− n)Mn+m +
c2
12

(n3 − n) δn+m,0 (1b)

[Mm, Mn] = 0 (1c)

In [10], a precise spacetime picture for the limiting pro-
cedure was outlined which generated the flat space sym-
metry algebra (1) from the AdS symmetry algebra.

Even though three-dimensional (3D) Einstein gravity
is the simplest setup to address flat space holography, it
comes with the major problem that there is no concrete
proposal yet for a specific field theory with (1) as sym-
metry algebra and central extensions c1 = 0, c2 6= 0, as
predicted from Einstein gravity [8]. The situation would
be significantly better if c1 6= 0 and c2 = 0, since then the
non-trivial part of the algebra (1) would reduce to one
copy of the Virasoro algebra and one may expect (the
chiral half of) a standard CFT as field theory dual.

In this letter we solve this problem. Namely, we show
that a possible way around is to add to pure Einstein
gravity a gravitational Chern-Simons term. The theory
is called Topologically Massive Gravity (TMG) [14]. The
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action of TMG is given by

ITMG =
1

16πG

∫

d3x
√−g

[

R+
2

ℓ2
+

1

2µ
CS(Γ)

]

(2)

where G is the Newton constant, R the Ricci scalar, ℓ
the AdS radius, µ is the Chern–Simons coupling and
CS(Γ) = ελµνΓρ

λσ

(

∂µΓ
σ
ρν + 2

3Γ
σ
µτΓ

τ
νρ

)

is the gravi-
tational Chern–Simons term.
The asymptotic symmetries of 3D flat space at null in-

finity were studied for Einstein gravity in [8]. We impose
boundary conditions on the metric gµν , which general-
ize/correct the ones proposed in [8]:

guu = huu +O(1
r
) gur = −1 + hur/r +O( 1

r2
) (3a)

guθ = huθ +O(1
r
) grr = hrr/r

2 +O( 1
r3
) (3b)

grθ = h1(θ) + hrθ/r +O( 1
r2
) (3c)

gθθ = r2 + (h2(θ) + uh3(θ))r +O(1) (3d)

All coefficients hµν are functions of retarded time u and
angle θ, but they do not depend on the radius r. For
huu = −1 we recover asymptotically the Minkowski line-
element in outgoing Eddington–Finkelstein coordinates:

ds2 = − du2 − 2 dr du+ r2 dθ (4)

In these coordinates the future null boundary I
+ is ap-

proached in the limit r → ∞. The six Killing vectors of
(4), ℓn, mn (with n = ±1, 0), form an iso(2, 1) algebra:

ℓn = ieinθ(inu∂u − in(r + u)∂r + (1 + n2u

r
)∂θ) (5a)

mn = ieinθ(∂u − n2∂r − i
n

r
∂θ) (5b)

The asymptotic symmetry group is generated by

Ln = ieinθ
(

inu∂u − inr∂r + (1 + n2u

r
)∂θ) + . . . (6a)

Mn = ieinθ∂u + . . . (6b)

where the dots refer to sub-leading terms, · · · = O(1
r
)∂u+

(

uf1(θ) + f2(θ) + O(1
r
)
)

∂r +
(

f3(θ)/r + O( 1
r2
)
)

∂θ, gen-
erating trivial gauge transformations which are modded
out in the asymptotic symmetry group. The generators
preserve the boundary conditions (3) and satisfy asymp-
totically the BMS algebra (1) (without central terms).
The generators L±1 , M±1 and the corresponding Killing
vectors ℓ±1, m±1 differ by a trivial gauge transformation.
The boundary conditions (3) can be verified (e.g. us-

ing [15]) to be consistent in TMG, yielding well-defined
charges that are finite, integrable and conserved. They
are given by

QMn
=

1

16πG

∫

dθ einθ
(

huu + h3
)

, (7a)

QLn
=

1

16πGµ

∫

dθ einθ
(

huu + ∂uhur +
1
2∂

2
uhrr + h3

)

+
1

16πG

∫

dθ einθ
(

inuhuu + inhur + 2huθ + ∂uhrθ

− (n2 + h3)h1 − inh2 − in∂θh1
)

. (7b)

The proof of the conservation of the charges requires
to solve the equations of motion (EOM) asymptotically.
For finite values of µ the crucial on-shell conditions that
establish charge conservation are given by ∂uhuu = 0,
hur = − 1

2 ∂uhrr, and u∂θhuu + ∂θhur = 2huθ + ∂uhrθ.
When realized as asymptotically conserved charges,

the charge algebra picks up central extensions exactly
as in (1). In TMG we obtain

c1 =
3

µG
, c2 =

3

G
. (8)

This is consistent with the result of [8] for Einstein grav-
ity, recovered in the limit µ → ∞. The point of interest
here is that the Virasoro part of the BMS algebra acquires
a non-trivial central extension, c1 6= 0. This resolves one
of the problems encountered in Einstein gravity.
In order to resolve another one, namely the fact that

c2 6= 0, we briefly reconsider TMG in AdS. This is also
useful in its own right, since the BMS algebra (1) can
be obtained by a contraction of the asymptotic AdS al-
gebra, Ln = Ln − L̄−n, Mn = 1

ℓ
(Ln + L̄−n) [8]. Here

ℓ is the AdS-radius, which is sent to infinity in the flat-
space limit. The Ln and L̄n are the generators of two
copies of the Virasoro algebra [see (1a)], with central
charges c = 3ℓ

2G (1 + 1
µℓ
), c̄ = 3ℓ

2G (1 − 1
µℓ
) [16]. In the

limit ℓ → ∞ the corresponding BMS central charges in
the algebra (1) then become c1 = limℓ→∞(c − c̄) = 3

µG
,

c2 = limℓ→∞
1
ℓ
(c + c̄) = 3

G
. This agrees precisely with

the result (8) of our canonical analysis.
The consistency check we just performed indicates how

to proceed to obtain vanishing central charge c2: We
should consider a limit of TMG where c = −c̄. Alterna-
tively, one can take the flat-space limit of TMG where ad-
ditionally Newton’s constant is scaled to infinity, G→ ∞,
while keeping fixed µG:

µ = ǫ→ 0 , G =
1

8kǫ
→ ∞ so that µG =

1

8k
(9)

The quantity k is the rescaled inverse Newton constant,
whose meaning will become clear in a moment. Both
limits described above exist and both lead to conformal
Chern–Simons gravity (CSG) [17] with action

ICSG =
k

4π

∫

d3x
√−gCS(Γ) . (10)

The constant k is now recognized as the Chern–Simons
level.
It is known that CSG (10) admits flat solutions [14].

So the flat limit of TMG (2) in the scaling limit (9) is
CSG (10). The dual of this theory, if it exists, is given
by the 2D GCA (1) with central charges [see (8)]

c1 = 24k c2 = 0 . (11)

Both central charges are of the desired form. This is one
of the main results of this letter.
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It is worthwhile to compare with the situation of AdS
holography in TMG. There the only candidate for a
unitary theory (with Brown–Henneaux boundary condi-
tions) and macroscopic central charge (c > 1) is chiral
gravity [18]. Interestingly, chiral gravity also leads to a
single copy of the Virasoro algebra as asymptotic sym-
metry algebra, which suggests that chiral gravity could
be related to our flat-space limit of TMG with the scaling
limit (9) [or, equivalently, of CSG (10) with our flat-space
boundary conditions (3)]. We now strengthen the anal-
ogy with chiral gravity arguing that our resulting theory
is indeed chiral.
As demonstrated above the states of the bulk form

representations of the 2D GCA. Such representations are
labeled by the eigenvalues ξ and ∆ of L0 andM0 [19, 20].

L0|∆, ξ〉 = ξ|∆, ξ〉 M0|∆, ξ〉 = ∆|∆, ξ〉 (12)

One defines the notion of primary states in the usual CFT
language as the states annihilated by Ln,Mn for n > 0.
The representations are built by acting on these primary
states with raising operators L−n,M−n, which raises the
ξ eigenvalue to ξ + n. For CSG (10) the eigenvalue ∆
vanishes in the flat-space limit since it scales linearly with
ǫ [see (9)]. From general considerations [20] we know that
the 2D GCA (1) with c2 = 0 has unitary sub-sectors for
∆ = 0 where the GCA module can be reduced to the
Virasoro module and usual unitary requirements of 2D
CFTs apply here. All this fits nicely with the suggestion
that the dual of chiral gravity is the chiral half of a CFT.
Therefore, we call CSG (10) with our boundary condi-

tions (3) “flat-space chiral gravity” and conjecture that
it is dual to a chiral half of a CFT with central charge
c = 24k. We discuss now several important consequences
and additional checks of our conjecture.
We mentioned that for c2 = ∆ = 0 the representations

of the 2D GCA reduce to those of the Virasoro algebra.
By analyzing null vectors following [20] we substantiate
now this claim. Like in usual 2D CFTs, null states in
the GCA representations are states which are orthogonal
to all states including themselves. At level one the most
general state is given by (aL−1 + bM−1)|ξ,∆〉. Acting
with L1 or M1 and requiring the results to vanish gives
the conditions ∆ = a = 0 (or the trivial a = b = 0). The
level one null state is then given by

|χ1〉 =M−1|ξ, 0〉 . (13)

At level two the most general state is
(

a1L−2 + a2L
2
−1 +

b1L−1M−1 + d1M
2
−1 + d2M−2

)

|ξ,∆〉. Again we find the
conditions for the existence of null states by acting with
lowering operators. We restrict our attention to the case
c2 = ∆ = 0. Then the constraints for the existence of
null vectors simplify to a1 = a2 = 0 and b1 = − 3

2(ξ+1)d2.

This leads to two level two null vectors, |χ1
2〉 =M2

−1|ξ, 0〉
and |χ2

2〉 = (L−1M−1 − 2
3 (ξ+1)M−2)|ξ, 0〉. There are no

constraints on the central charge c1 or the weight ξ. If

we consistently set the level one null state (13) and its
descendants to zero, at level two we are left with just

|χ2〉 =M−2|ξ, 0〉 . (14)

This analysis can be continued, and at any level n we
find that we have a new null state |χn〉 =M−n|ξ, 0〉 if we
set all the other lower level null states and their descen-
dants to zero. Thus, if all the null states are truncated in
a consistent manner, the tower of states precisely reduces
to the Virasoro tower given by the Virasoro descendants
of the primary state. There is generically no condition
on c1 and ξ; hence we can consider the truncation of
the Hilbert space to just the Virasoro module. Here by
the usual analysis of null vectors of the Virasoro algebra,
one can put unitarity constraints on the values of central
charge c1 and weight ξ. In conclusion, we can have uni-
tary representations of the GCA with c2 = ∆ = 0. We
call this the chiral truncation of the GCA.
We study next aspects of the linearized spectrum by

considering solutions ψµν to the linearized CSG EOM
around the flat background (4). A class of such solutions
parametrized by the L0-eigenvalue ξ is given by

ψµν(ξ) = e−i(ξ+2)θr−ξ−2
(

m1 ⊗m1

)

µν
(15)

The modes (15) are primaries, in the sense that ℓ1ψ =
0 = m1ψ, traceless, since (m1)

2 = 0, and trans-
verse, ∇µψ

µν = 0. They obey the differential equation
Dψαβ := ǫα

γδ∇γψδβ = 0 and are a flat-space analogue of
the AdS modes constructed in [18]. In transverse gauge
the linearized CSG EOM reduce to (Dψ)3 = 0. There
are two additional branches of solutions [21]. One is

the flat-space analogue of log excitations [22], ψlog
αβ (ξ) =

−i(u + r)ψαβ(ξ). The other one could be called log-

squared, ψlog2
αβ (ξ) = − 1

2 (u + r)2 ψ(ξ). The angular mo-
mentum operator L0 expectedly is diagonal. The opera-
tor M0 has a rank-3 Jordan cell:

M0





ψlog2

ψlog

ψ



 =





0 1 0
0 0 1
0 0 0









ψlog2

ψlog

ψ



 (16)

The result (16) differs from AdS-TMG [22] and flat-space
Einstein gravity, which have rank-2 Jordan cells.
An even more crucial difference to the AdS case is the

fact that all modes (15) (and their log and log-squared
partners, as well as their ℓ−1 and m−1 descendants) are
either divergent at r = 0 or incompatible with our bound-
ary conditions (3). Moreover, the modes compatible
with our boundary conditions all have vanishing charges.
However, we can construct directly linearized modes by
acting with the Virasoro generators L−n on the vacuum
(4), denoted by ψ(n) = L−n|0〉 on the CFT side. We
obtain on the gravity side the non-vanishing components

ψ(n)
uu = −2ne−inθ, ψ

(n)
uθ = − inu

2
ψ(n)
uu , ψ

(n)
θθ = −n2ruψ(n)

uu .

(17)
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Note that the modes (17) are neither traceless nor trans-
verse, but solve the linearized CSG EOM, are compat-
ible with our boundary conditions and regular in the
interior. The conserved Virasoro charges are given by
QLn

(ψ(n)) = 2k(n3 − n); in particular, QLn
(ψ(0,±1)) = 0

as expected from the CFT side. Thus, the spectrum of
the modes (17) consistently matches the spectrum of Vi-
rasoro descendants of the vacuum on the CFT side.
In addition to the linearized spectrum it is of interest to

look for non-perturbative states, basically the flat-space
limit of BTZ black holes [23–25]. They are important
contributions to the quantum gravity partition function
and required for modular invariance [26]. We find indeed
such solutions compatible with (3), parametrized by the
locus of the Killing horizon r0 and a parameter α:

ds2 = α2
(

1− r2
0

r2

)

du2−2 du dr+r2
(

dθ− αr0
r2

du
)2

(18)

We calculate now the conserved charges associated
with these “flat BTZ” solutions (18). In the limit (9),
the charges of the asymptotic symmetry algebra (7) sim-
plify and the previous on-shell conditions are replaced by
∂uhuu + ∂2uhur +

1
2 ∂

3
uhrr = 0. This is sufficient to prove

conservation of the charges QLn
, which read explicitly

QLn
=

k

2π

∫

dθ einθ
(

huu+∂uhur+
1
2∂

2
uhrr+h3

)

. (19)

The charges QMn
vanish due to the scaling limit (9).

From (19) we read off that the vacuum (4) has the con-
served Virasoro charge QL0

(vacuum) = −k while the
non-perturbative states (18) have QL0

(flat BTZ) = kα2.
Thus, we have just proven that there is a gap in the

spectrum between the vacuum and the non-perturbative
states. The size of the gap is given by k = c

24 . The pres-
ence of this gap is a non-trivial check of our conjecture,
and an indication [27] that the dual CFT might be an
extremal CFT. In particular, for k = 1 Witten has identi-
fied a specific extremal CFT with c = 24 [27], namely the
monster theory of Frenkel, Lepowsky and Meurman [28].
This allows us to sharpen our conjecture, namely that
flat-space chiral gravity at Chern–Simons level k = 1 is
dual to the monster CFT. If this is true and also the chi-
ral gravity conjecture [18] holds then chiral gravity and
flat-space chiral gravity must be dual to each other. Al-
ternatively, either of the purported gravity duals of the
monster CFT could be unstable and decay/flow to the
stable solution. The RG analysis in Ref. [29] is an indi-
cation that our limit (9) is stable under RG flow, while
the chiral gravity tuning µℓ = 1 is not.
It is of interest to perform further checks of our conjec-

ture. We mention some promising avenues. Thermody-
namics should be studied and consistency with the Cardy
formula should be checked. The quantum gravity parti-
tion function should be calculated and compared with
CFT expectations. Two- and three-point correlators can
be calculated on the gravity side to check consistency

with conformal Ward identities. Finally, it would be
good to clarify if other flat-space limits are possible, for
instance limits that do not localize asymptotically on the
future null boundary, but that include also other com-
ponents of the asymptotic boundary, or similar limits in
other theories of gravity. We intend to address some of
these aspects in the future [30].
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