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We show that the Hamiltonian of a multi-band spin-orbit coupled semiconductor nanowire with
Zeeman splitting and s-wave superconductivity is approximately chiral symmetric. The chiral sym-
metry becomes exact when only one pair of confinement bands is occupied and the Zeeman splitting
is parallel to the nanowire. In this idealized case the Hamiltonian symmetry class is BDI allowing an
arbitrary integer number of zero energy Majorana fermion modes at each end. In the realistic case of
multi-band wires (Zeeman splitting still parallel to length) the chiral symmetry is approximate and
results in multiple near-zero-energy end states with increasing Zeeman splitting. The existence of
such low energy end states implies vanishing of the minigap with increased Zeeman splitting which
can only be restored by breaking the approximate chiral symmetry by a second Zeeman field.
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Rashba spin-orbit (SO) coupled semiconductors in di-
mensions d = 2, 1 with a Zeeman field and proximity-
induced s-wave superconductivity have recently at-
tracted a lot of attention [1–17]. Under suitable external
conditions these systems can support Majorana fermion
(MF) excitations (defined by second quantized opera-
tors γ† = γ) whose statistics is non-Abelian. In d = 2
the particle-hole (p-h) symmetric Bogoliubov-de Gennes
(BdG) Hamiltonian of the Rashba-coupled semiconduc-
tor with s-wave superconductivity and a Zeeman field in
the z-direction (semiconductor plane being (x− y)) is in
the topological class D [18, 19] with an integer Z topolog-
ical invariant which counts the number of gapless chiral
Majorana modes on the boundary. From dimensional
reduction, i.e., by putting one of the wave-vectors (say
ky) to zero [20], the gapless boundary Majorana modes
in d = 2 reduce to zero-energy end Majorana modes
in a d = 1 nanowire. The dimensional reduction argu-
ment suggests that the number of possible end Majorana
modes in a SO coupled nanowire should also in principle
be an integer. In this paper, we first discuss an inher-
ent chirality symmetry of the nanowire Hamiltonian with
only a single pair of occupied confinement-induced bands
(i.e., large confinement energy) and use it to map the
problem on the general theoretical framework for chiral
symmetric Hamiltonians [21, 22]. Based on this we argue
that the Hamiltonian for the idealized case of a single-
band (by ‘single-band’ we mean a single pair of spin-split
sub-bands [13]) nanowire with proximity induced s-wave
superconductivity and a parallel Zeeman field is in the
topological class BDI with a Z invariant which gives the
number of zero-energy Majorana modes on a given end
[18–22]. We discuss the algebraic form of the Z invariant
[21, 22] and its relation with the more-frequently-used
Z2 invariant [23, 24] which gives only the parity of the
number of end Majorana modes. For realistic multi-band

nanowires we show that the exact chiral symmetry of
single band wires is broken by the inter-band Rashba
couplings and thus, the realistic nanowires are not in the

topological class BDI. Nevertheless, the experimentally
realistic inter-band Rashba couplings increase the ener-
gies of the zero energy end states only slightly, resulting
in multiple near-zero-energy end states. Since the chi-
ral symmetry is only weakly broken by the interband
Rashba couplings, we call the multi-band nanowires ap-
proximately chiral symmetric. We show that the approx-
imate chiral symmetry of the multi-band wires results in
multiple near-zero-energy end states on a given end with
increasing parallel Zeeman field. The existence of such
multiple low energy states on a given end implies van-
ishing of the minigap above the Majorana fermion end
states which can only be restored to experimentally real-
istic values by externally breaking the approximate chiral
symmetry by a second Zeeman field.

The topological class of the SO coupled semiconductor
is analogous to that of a spinless px+ipy superconductor.
In d = 2 the spinless px + ipy superconductor, with bro-
ken time reversal (TR) invariance (due to the presence
of i in the order parameter), is in class D characterized
by a Z invariant [25, 26]. It is also possible to define a
Z2 invariant which only counts the parity of the number
of boundary Majorana modes [24]. Dimensional reduc-
tion arguments suggest that the number of possible end
MFs in a d = 1 spinless superconductor should also be an
integer and this has recently been shown explicitly [27].
Therefore, the Hamiltonian should be in the topological
class BDI with a Z invariant in d = 1. Note, however,
that d = 1 Hamiltonians in class BDI are supposed to be
TR-invariant while the spinless px + ipy superconductor
explicitly breaks TR symmetry in d = 2. The key to
this difference is that, in d = 1, the Hamiltonian can be
made completely real [27] while it is necessarily complex
in d = 2. Redefining the time-reversal operator only in
terms of the complex conjugation operator K, it follows
that in d = 2 this symmetry is broken (class D) but it
remains intact in d = 1 (class BDI). More generally, we
show below that the emergence of the reality condition
in d = 1 changes the symmetry class of the spinless p-



2

wave superconductor as well as the single-band Rashba
spin-orbit coupled system from D in d = 2 to BDI in
d = 1. After discussing the Z invariant for the single-
band Rashba coupled BDI system using the framework
for chiral symmetric Hamiltonians [18–22], we discuss the
more general experimentally realistic multi-band Rashba
coupled wires and show how the approximate chiral sym-
metry results in the vanishing of the minigap with in-
creasing Zeeman fields.

To understand the difference between complex and real
Hamiltonians let us start from the Hamiltonian of a spin-
less px + ipy superconductor in d = 2,

H1(k) = (ǫk − µ)τz +∆xkxτx −∆ykyτy, (1)

where k is a two-dimensional wave-vector, µ is the chem-
ical potential, and ∆x,∆y are superconducting pair po-
tentials along the x, y directions, respectively. Here we
have used the p-h basis (c†

k
, c−k) and its hermitian con-

jugate, and the τ matrices in Eq. 1 are defined in this
basis. Writing this Hamiltonian in terms of the Ander-
son pseudo-spin vector [28] ~d(k) as H1(k) = ~d(k).~τ , we
see that for spinless px + ipy superconductor in d = 2 all

three components of ~d are non-zero. The group of topo-
logical invariant is then Z which is the relevant homotopy
group π2(S

2) of the mapping from the two-dimensional
k space to the 2-sphere of the 3-component unit vector
d̂ = ~d/|~d| [25, 26]. On the other hand, in d = 1, since the
corresponding Hamiltonian can be made purely real (∆x

drops out from Eq. (1) for the system along the y-axis),

the vector ~d has only two components. Noting that the
k-space now is also one-dimensional, the topological in-
variant must again be in Z (class BDI) since π1(S

1) = Z.
This invariant is simply the winding number,

N =
1

2π

∫ 2π

0

dθ(k), (2)

where θ(k) is the angle the unit vector d̂ makes with, say,
the z-axis on the y−z plane. It is clear that only with the
breakdown of the reality condition of the BdG Hamilto-
nian the symmetry class of the spinless p-wave supercon-
ductor can change from BDI to D (which is characterized
by a Z2 invariant) even in d = 1.

In d = 2, 1 the 4 × 4 BdG Hamiltonian H2(k) of a
single-band Rashba-coupled semiconductor with Zeeman
coupling and proximity induced s-wave superconductiv-
ity is given by,

H2(k) = (ǫk − µ)τz + VZ Ŝ · στz + αkxσyτz

− αkyσx +∆0σyτy, (3)

where we have used the 4-component p-h spinor
(u↑(r), u↓(r), v↑(r), v↓(r)) (with quasiparticle operators
given by d† =

∑
σ(uσ(r)c

†
σ(r) + vσcσ(r))), and the Pauli

matrices σx,y,z, τx,y,z act on the spin and particle-hole

spaces, respectively. In Eq. (3), the vector Ŝ is a suit-
ably chosen direction of the applied Zeeman spin split-
ting VZ (e.g., Ŝ = ẑ in d = 2 for k = (kx, ky), Ŝ = x̂
in d = 1 for k = kx), µ is the chemical potential, α is
the Rashba SO coupling constant, and ∆0 is an s-wave
superconducting pair-potential. It is clear that in d = 2
the Hamiltonian cannot be made real because of the com-
plex Rashba term. In contrast, in d = 1 H2 can be made
purely real, and one can define a pseudo TR operator in
terms of K alone. Then, in d = 1 H2 preserves both p-h
as well as the new ‘time reversal’ symmetry and hence is
in class BDI characterized by a Z invariant. Note, how-
ever, that in contrast to the case of a spinless p-wave
superconductor, the components of the ~d-vector in the
present 4× 4 Hamiltonian are themselves 2× 2 matrices.
More generally, the BdG Hamiltonian of a TS system in
d = 1, despite being real (thus preserving the chiral sym-
metry), can be a large 2N × 2N square matrix so that

the components of the ~d-vector are N ×N matrices.
Let us now show that in general real BdG Hamiltonians

such as the Hamiltonian for the single-band Rashba spin-
orbit coupled superconductor (Eq. 3) in d = 1, are chiral
symmetric i.e. can be unitarily transformed to an off-
diagonal matrix [20]. Since in the p-h space the matrix
H in Eq. 3 can be written as H = H0τz + i∆τy it can be
made purely off-diagonal by a rotation in the p-h space
by the unitary transformation U = e−iπ

4
τy . It follows

that the rotated Hamiltonian

UH(k)U † =

(
0 A(k)

AT (−k) 0

)
(4)

is off-diagonal and therefore chiral-symmetric. Moreover,
the transformed Hamiltonian is symmetric with the ma-
trixA = H0+∆ being real i.e. it satisfiesA(k) = A∗(−k).
The off-diagonal form of the transformed Hamiltonian
is a result of the chiral symmetry [18–20] defined as
S = K · Λ (with Λ = τx · K in this basis), under which
the Hamiltonian is invariant.
We now review the procedure [21, 22, 29, 30] for

constructing the Z-invariant associated with chiral-
symmetric Hamiltonians. The topological Z-invariant as-
sociated with chiral-symmetric Hamiltonians is obtained
by writing the Hamiltonian in k-space as

UH(k)U † =

(
0 A(k)

AT (−k) 0

)
, (5)

where A(k) is the momentum space representation of
A. Since, Det(UH(k)U †) = Det(A(k))Det(AT (−k)),
Det(A(k)) can only vanish if H(k) has a vanishing de-
terminant or equivalently a zero-eigenvalue. Therefore,
Hamiltonians H(k), with a gap at zero-energy, are char-
acterized by a complex function z(k) = exp(iθ(k)) =
Det(A(k))/|Det(A(k))|, of modulus |z(k)| = 1. For
d = 1, where the wave-vector k is periodic from k = 0 to
k = 2π, so that the existence of the function z(k) leads
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to a natural association of a winding number W with H ,

which is written as W = −i
2π

∫ k=2π

k=0
dz(k)
z(k) . Since the ma-

trix A, from which A(k) was derived, was real in Eq. 4
as a consequence of the particle-hole symmetry of H ,

Det(A(k)) = Det(A(−k))∗. (6)

Therefore the winding number W can be written as

W =
−i

π

∫ k=π

k=0

dz(k)

z(k)
. (7)

Even though the calculation of W requires an integral
over the half of the Brillouin zone, in practice the value
of the integrand shows any significant variation only near
k = 0 for the spin-orbit coupled nanowire [31]. This
justifies the use of the (k ·p)-type Hamiltonian Eq. (3) to
calculate the integer invariant W defined over the entire
Brillouin zone.
Now we derive a formula connecting the Z invari-

ant W and the Pfaffian Z2 invariant [23, 24] more fre-
quently used for a semiconductor nanowire. The Pfaf-
fian Z2 invariant is defined for any BdG matrix HBdG

with a particle-hole symmetry of the form τxHBdG =
−H∗

BdGτx (note that Λ = K · τx) where τx = τTx is the
symmetric particle-hole transformation matrix satisfying
τxτ

∗
x = 1. Then the matrix HBdGτx is anti-symmetric

i.e (HBdGτx)
T = τxH

∗
BdG = −HBdGτx. This allows us to

define a Pfaffian Pf(HBdGτx) associated with the BdG
Hamiltonian as

Q = sign[
Pf(H(k = π)τx)

Pf(H(k = 0)τx)
], (8)

where k = 0, π are the particle-hole symmetric k-points
in the Brillouin zone.
For chiral-symmetric matrices, the Pfaffian of H(k) at

the particle-hole symmetric k-points k = 0, π can be sim-
plified as

Pf [H(k)τx] = Pf [U †

(
0 A(k)

AT (−k) 0

)
UτxU

TU∗]

= Pf [

(
0 A(k)

−AT (−k) 0

)
] = Det(A(k)), (9)

where we have used the fact that Det(U) = 1. Com-
puting the Pfaffian invariant in Eq. 8 using the above
result, we obtain that the Z2 invariant for chiral sym-
metric Hamiltonian is given by

sign[
Det(A(k = π))

Det(A(k = 0))
] =

z(k = π)

z(k = 0)
= eiπW = (−1)W .

(10)
The second pair of equalitites follow from the definition
of the winding number W in Eq. 7. Therefore the famil-
iar Z2 Pfaffian invariant of the d = 1 systems is simply
the parity of the more general Z invariant of a chiral
Hamiltonian.

We now consider the case of a single-band SO-coupled
semiconductor nanowire with a parallel Zeeman coupling
and a proximity-induced s-wave superconductivity. In
this case, from Eq. (3) we have,H0 = (ǫk−µ)+αf(k)σy+
VZσx and ∆ = i∆0σy so that A(k) = (ǫk−µ)+αf(k)σy+
VZσx+i∆0σy . Here we have generalized the SO coupling
term to have a general wave-vector dependence with the
constraint f(k → ±π) → 0. We find that

Det(A(k)) = (ǫk −µ)2+∆2
0−V 2

Z −α2f2(k)+2i∆0αf(k)
(11)

has a winding number W = 1 whenever the Pfaffian of
the Hamiltonian (ǫk−µ)2+∆2

0−V 2
Z−α2f2(k) has a single

zero as k ranges from k = 0 to k = π. This corresponds to
the regime where the Z2 Pfaffian invariant in Eq. 8 is non-
trivial. In the limit of small ∆, this corresponds to a sin-
gle band crossing the fermi-level at a pair of points ±kF .
By considering the trajectory of Det(A(k)) in Eq. 11 in
the complex plane as k changes from 0 to π, and noting
that Det(A(k)) 6= 0 and Det(A(k)) moves from a point
on the positive real axis to the negative real axis while
crossing the imaginary axis exactly once, it is clear the
winding number W = ±1 depending on the sign of f(k)
when Re(Det(A(k))) = 0.
Now we consider a quasi-1D nanowire (lengths Lx ≫

Ly ≫ Lz) with multiple occupied bands with a parallel
Zeeman field (i.e., in x-direction) and proximity induced
s-wave superconductivity. For a wire of infinite length,
the BdG Hamiltonian of the multiband system has the
form,

Hnm(k) = [ǫnm(k)− µδnm]τz + VZδnmσxτz

+ αkδnmσyτz − iαyqnmσx +∆nmσyτy , (12)

where k = kx, n,m label different confinement bands
with wave functions φn(y) ∝ sin(nπy/Ly), and the
induced superconducting pairing ∆nm contains non-
vanishing inter-band components. The inter-band
Rashba coupling αy comes with matrix elements qnm ∝
〈φn|∂/∂y|φm〉 which couple transverse states with oppo-
site parity. As we show below a finite αy breaks the exact

chirality symmetry of H̃nm = Hnm(αy = 0) to only an
approximate one for Hnm.
To discuss the chirality symmetry of the multi-band

nanowire we first consider the Hamiltonian H̃nm. It can
be seen by explicit construction that H̃nm anticommutes
with a unitary operator S = τx,

{H̃nm,S} = 0. (13)

Here, the chirality operator S = τx with the p-h opera-
tor Λ = τx · K. It is easy to check explicitly that H̃nm

commutes with the complex conjugation operator K and
anticommutes with the p-h transformation operator Λ,
and hence it anticommutes with the chirality operator
S = K · Λ = τx. The existence of all three symmetries -
‘time reversal’, particle-hole, and chirality - ensures that
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H̃nm is in the BDI symmetry class [18–20] characterized
by an integer invariant W . From Eq. (13) it follows that

the large square matrix Hamiltonian H̃nm can be off-
diagonalized in a basis in which the unitary operator S
is diagonal:

UH̃nm(k)U † =

(
0 A(k)

AT (−k) 0

)
. (14)

Defining the variable z(k) = exp(iθ(k)) =
Det(A(k))/|Det(A(k))| and following Eq. (7), we
can now calculate the invariant W which is an integer
(W ∈ Z) including zero. The integer W gives the
number of zero energy Majorana modes on any given
end of the nanowire described by the hamiltonian H̃nm.
As has been shown in detail in Ref. [31], on the (µ−VZ)
plane W increases in integer steps with increasing VZ

(for fixed µ), indicating quantum phase transitions to
phases with multiple Majorana modes on a given end
with increasing Zeeman coupling.

In a real quasi-1D nanowire with finite αy, Hnm(αy 6=
0) does not anti-commute with τx. Hence, the Hamilto-
nian matrix is no longer off-diagonalizable in the diagonal
basis of S and the number W can no longer be defined.
A finite αy thus breaks the chirality symmetry. Never-
theless, since αy = α ∼ 0.1eV Å makes only a minute
contribution ∼ 10−2Eqp (Eqp ∼ 1K is the expected bulk
quasiparticle gap in InAs wires in proximity to Nb) to
the energies of the end states, the integer invariant for
H̃nm (i.e., with αy = 0) can still be used to describe
the phase diagram of Hnm(αy = α) with the integer W
now indicating the number of near-zero energy end states
on a given end. The different topological phases of the
full Hamiltonian Hnm(αy = α) characterized by different
numbers of near-zero-energy end states can be character-
ized by different values of the integer W calculated for
the corresponding reduced Hamiltonian Hnm(αy = 0). It
is also important to note [31] that the multiple near-zero-
energy end states on a given end of a realistic nanowire
are robust to all perturbations including disorder as long
as the chirality symmetry of Hnm(αy = 0) is unbroken.
The exact chiral symmetry of Hnm(αy = 0) (which is
only approximate for Hnm(αy = α)) thus leads to an ef-
fective vanishing of the minimum topological gap (mini-
gap) in realistic quasi-1D nanowires with increasing VZ .
It then becomes difficult (although not impossible [32])
to probe the physics of isolated MFs with increasing VZ

at experimentally accessible temperatures [32, 33].

The small minigap problem of quasi-1D multi-band
nanowires can be resolved by applying an additional
transverse Zeeman field V y

Z = g∗µBBy/2 in addition to
the longitudinal one needed to create the TS state itself.
With this term, the BdG Hamiltonian of the nanowire
becomes,

H ′
nm(k) = Hnm(k) + V y

Z δnmσy . (15)

In H ′
nm(k) the terms with coupling constants V y

Z and
αy cannot be made fully off-diagonal even in the basis
in which S = τx is diagonal. It is not possible to con-
struct any unitary symmetry operator with the available
discrete symmetries (time reversal, particle-hole, com-
plex conjugation, etc)) that anticommutes with H ′

nm.
It follows that V y

Z externally breaks the chiral symme-

try hidden in H̃nm . It can be shown that [31], with
no V y

Z if the number of near-zero modes is even, the
transverse field creates a gap for all of them resulting
in no Majorana edge mode. If the number of zero modes
is odd for V y

Z = 0, the transverse field opens a gap
for all of them except one, resulting in only one non-
degenerate Majorana end mode at each end. The en-
ergy gap above the non-degenerate Majorana mode is
the minigap which is now tunable by the external trans-
verse Zeeman field breaking the approximate chirality
symmetry of the multi-band wire. As shown in Ref. [31]
the minigap can be lifted to experimental temperature
regimes (∼ 0.1Eqp = 100mK) by external breaking of
the chiral symmetry of Hnm(αy = 0) with a reasonable
second Zeeman splitting orthogonal to the wire.

In summary we show that the Hamiltonian of a 1D
single-band SO-coupled semiconductor nanowire with s-
wave superconductivity and a parallel Zeeman field is chi-
ral symmetric and in the topological class BDI with an
integer Z topological invariant. The familiar Z2 invariant
of this system only gives the parity of the integer invari-
ant. For realistic quasi-1D multi-band nanowires the chi-
ral symmetry is only approximate, nevertheless it results
in multiple near-zero-energy end states on any given end
with increasing values of the parallel Zeeman splitting.
The results derived here have important implications for
the topological minigap and robustness of MF modes in
semiconductor nanowires [31]. In particular the approxi-
mate chiral symmetry implies that the minigap of a real-
istic multi-band wire almost vanishes with the increase of
the parallel Zeeman field and can only be restored to ex-
perimentally accessible values by a second Zeeman field
orthogonal to the wire which breaks the approximate chi-
ral symmetry. The results here have also been recently
shown to be important for Majorana flat bands in (p±ip)
superconductors [34] and edge MF modes in semiconduc-
tor wires with long SO coupling lengths [35, 36].
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