
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stimulation of the Fluctuation Superconductivity by PT
Symmetry

N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M. Vinokur
Phys. Rev. Lett. 109, 150405 — Published  9 October 2012

DOI: 10.1103/PhysRevLett.109.150405

http://dx.doi.org/10.1103/PhysRevLett.109.150405


LS13054

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Stimulation of the fluctuation superconductivity by the PT -symmetry
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We discuss fluctuations near the second order phase transition where the free energy has an
additional non-Hermitian term. The spectrum of the fluctuations changes when the odd-parity
potential amplitude exceeds the critical value corresponding to the PT -symmetry breakdown in the
topological structure of the Hilbert space of the effective non-Hermitian Hamiltonian. We calculate
the fluctuation contribution to the differential resistance of a superconducting weak link and find the
manifestation of the PT -symmetry breaking in its temperature evolution. We successfully validate
our theory by carrying out measurements of far from equilibrium transport in mesoscale-patterned
superconducting wires.
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An Hermitian character of the Hamiltonian expressed
by the condition H† = H is a cornerstone of quantum
mechanics as it ensures that the energies of its station-
ary states are real. Yet it was discovered not long ago [1]
that the weaker requirement H‡ = H , where ‡ repre-
sents combined parity reflection and time reversal (PT ),
introduces new classes of complex Hamiltonians [2] whose
spectra are still real and positive [1, 3–5]. This general-
ization of Hermiticity opened a new field of research in
quantum mechanics and beyond that had been enjoying
ever since a rapid growth.

We focus here on the superconducting fluctuations
above the superconductor – normal metal transition in
quasi 1D superconducting wire of the finite length L
driven far from equilibrium by an electric field E , see
Fig. 1. We show that either the presence or absence of
PT -symmetry in the Cooperon (fluctuation) propagator,
which depends on the magnitude of E , effects strongly the
structure of fluctuations.

The PT -symmetrical state corresponds to small drive,
|E| < Ec, where Ec is of the order of the Thouless en-
ergy, ETh = ~D/L2, the characteristic energy scale of the
dirty quasi-one-dimensional conductor, see Fig. 1, where
D is the electron diffusion coefficient in the wire and L
is its length. This state is nonequilibrium but stationary
where fluctuating Cooper pairs survive in the presence of
the electric field. Breaking the PT -symmetry at |E| = Ec
is the dynamic phase transition from the stationary to
the nonstationary dynamic state where the electric field
quickly destroys the Cooper-pairs. In this state Cooper
pair wave function qualitatively is represented as a lin-
ear superposition of the Ivlev-Kopnin “kinks” located at
the wire ends [6], having the phases that rotate with the
opposite rate. We calculate the fluctuation correction to
conductivity and show that for |E| > Ec this correction is
strongly suppressed by an electric field. It implies that
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FIG. 1. (Color online) Evolution of the two lowest energy
levels, ε0 and ε1 upon applying bias V = EL. At E = Ec

the levels merge and form the complex conjugate pair at E >
Ec. The inset shows the change of the eigenfunction |ψ0(x)|,
normalized to unity, upon variation of E : ψ0(x) is symmetrical
for E ≤ Ec and is asymmetric at E > Ec. The asymmetry of
ψ0(x) is the signature of the PT -invariance breakdown.

PT -symmetry effectively protects Cooper pairs from the
detrimental effect of the electric field and stabilizes su-
perconductivity.

The dynamics of the superconducting fluctuations
is described by the retarded fluctuation propagator
L̂R(t, t

′;x, x′) [10, 11]:

L̂−1
R = ∂t +Heff , (1)

where we use the units kB = e = ~ = 1. The effective
Hamiltonian, Heff [E ], describes the linearized Ginsburg-
Landau (GL) field theory [7, 8]. In general, L̂R can be
expanded through the eigen functions ψn and the eigen
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values εn of Heff :

L̂R(ω;x, x
′) =

∑

n

ψn(x)ψ
∗
n(x

′)

2iω − εn
. (2)

We show below using the technique developed in
Refs. [1, 5, 6] that PT -symmetry of L̂R holds at low
drives. At large E exceeding the certain critical value,
Ec, the PT -invariance breaks down and the two lowest
energy states ε0 and ε1 of Heff merge. At E > Ec they
form the complex conjugate pair (Fig.1). From the gen-
eral viewpoint of the catastrophe theory [12] bifurcations
of Heff [E ] belong to the so-called fold catastrophe topo-
logical class. This class of the bifurcations is (topologi-
cally) protected with respect to small local perturbation
of Heff preserving the symmetry of the system. There-
fore, in order to establish the existence of the bifurca-
tion and to find its type it would suffice to investigate
the effective Hamiltonian, Heff = −D∇2

x − τ−1 − 2iϕ.
Here ϕ is the potential of the electric field responsible for
the nonhermitivity of Heff . In application to our prob-
lem, neglecting in Heff the decay of the mean-field su-
perconducting order parameter from the reservoirs into
the wire does not violate the catastrophe theory clas-
sification of bifurcation symmetries. For the same rea-
son one may choose the boundary conditions in a form:
ψ(x = ±L/2∓ 0) = ψ(x→ ±∞) = 0. Here τ is the GL-
time and D > 0 is the material constant (e.g., electron
diffusion coefficient in the dirty superconductor). We fur-
ther discuss the case where ϕ(x) = Ex and x is the coor-
dinate along the wire.
The problem

Heffψ = εψ, (3)

can be solved using the anzatz [6]:

ψ(x) = αAi(Z) + β Bi(Z), (4)

Z(x) =
ε+ 2ixE
ETh

(

ETh

2V

)2/3

, (5)

where Ai and Bi are the Airy-functions, and α, β are
fixed by the boundary conditions. We absorbed τ−1 into
the definition of ε. Then the equation determining the
eigenvalues acquires the form:

F (ε, E) ≡ Im [Ai(Z(L/2))Bi(Z(−L/2))] = 0. (6)

The critical field Ec is the field of emergence of the first
bifurcation [12, 13] of Eq.(6) corresponding to merging of
lowest levels and is given by the conditions

F (εc, Ec) = 0 , ∂εF (εc, Ec) = 0 , (7)

where εc is the value of the energy at the levels merg-
ing point. We find Ec ≈ 49.25ETh/L, where εc = ε0 =
ε1 ≈ 28.43ETh. The same conditions give the next bi-
furcations where higher pairs of levels merge pairwise,

E(1)
c ≈ 4Ec, E(2)

c ≈ 10Ec, etc... As we have mentioned
above, the bifurcations described here belong to the uni-
versality class of the “fold catastrophe” (A2 in ADE clas-
sification). Then Ec is the tipping point of the catastro-
phe.
Expanding Eq.(6) near the bifurcation one finds [ 12 (ε−

εc)
2∂2ε + (E − Ec)∂Ec

]F (ε, E)|ε→εc ,E→Ec
= 0, so,

ε0,1(E) ≈ εc ∓ ETh

√

η

[

1− E2

E2
c

]

, (8)

η = Ec
∂Ec

F (εc, Ec)
E2

Th∂
2
εF (εc, Ec)

≈ π2

√
2

LEc
ETh

.

The results of the numerical solution of the eigenvalue
problem are shown in Fig.1 [14]. In the limiting case of
the semi-infinite wire, ψ0,1 for E > Ec change with coor-
dinates similarly to the solution for the order parameter
found in Ref. [6].
Now we proceed with the analysis of the dynamics of

the fluctuations in the wire using the following equation:

(L̂R)−1ψ = 0. (9)

As long as the field does not exceed the critical value,
E < Ec, the stationary solution of Eq.(1) remains stable
and is given by

ψ(x) ≃ ψ0(x), (10)

where we have taken τ−1 = ε0. This solution is PT -
invariant, i.e. |ψ0(x)| = |ψ0(−x)|, see Fig.1. The ex-
tremum of |ψ0(x)| is thus located at x = 0, at the center
of the weak link. The effective field-dependent critical
temperature for the superfluid correlations-induced su-
perfluidity within the weak link is to be found from the re-

lation τ−1 = ε0 and is given by T
(eff)
c (E) = Tc−πε0(E)/8.

The T
(eff)
c (E) dependence become singular near the criti-

cal field Ec, dT (eff)
c /dE|E=Ec

= ∞; this singularity results
in the anomalous behaviour of the nonlinear fluctuation
corrections to the conductivity. As the field goes above
the threshold, E > Ec, the stationary solution of Eq.(1)
ceases to exist. The eigenvalues become complex conju-
gate, Re ε0 = −Re ε1 = τ−1 [see inset in Fig.1], and

Im ε0(E) = − Im ε1(E) ≈ ETh

√

η

[E2

E2
c

− 1

]

. (11)

The eigenfunctions at E > Ec are not PT -invariant any
more, |ψi(x)| 6= |ψi(−x)|, i = 1, 2. Thus

ψ ∼ e−i Im(ε0−ε1)t/2ψ0(x) + ei Im(ε0−ε1)t/2ψ1(x). (12)

This implies that the order parameter becomes two-
component with the relative phase between the two com-
ponents rotating with the Josephson frequency Im(ε0 −
ε1). Since |ψ0(x)| = |ψ1(−x)|, the time averaged order
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parameter 〈|ψ(x)|2〉time ∼ |ψ0(x)|2+|ψ0(−x)|2 and devel-
ops a dip at x = 0, increasing in amplitude with growing
E . This spot of the relatively suppressed superfluidity
finally serves as a heating nucleus in the weak link.
Having calculated the eigenvalues εn and the eigen-

functions, ψn, n = 0, 1, . . ., of Heff , we proceed with the
analysis of the superfluidity in the wire under the exter-
nal drive. We will focus on the effect of superconducting
fluctuations on the conductivity of the weak link. The
most singular fluctuation contributions to the conduc-
tivity come from the Maki-Thompson and Aslamazov-
Larkin mechanisms [10, 11, 20], and the corresponding
currents read

j(MT) = 2DT 2E Tr{(LR
ω )

τ (CR
ε )τCA

ε L
A
ω}∂ǫnF (ǫ̃), (13)

j(AL) = DT 2Tr{(LR
ω )

τ (CR
ε )τ∇CR

ε L
A
ω + h.c.}δn ,

where T is the temperature, ǫ̃ = ǫ+ω, δn = nF (ǫ̃+ϕ)−
nF (ǫ̃ − ϕ), C

R(A)
ε = 4[D∇2

x ± 2iε+ γ]−1 is the retarded
(advanced) Cooperon propagator, γ is the inelastic relax-
ation rate, and trace ‘Tr’ means the integration over co-
ordinates, ε and ω (the latter two with the weights 1/2π).
Writing Eq.(13) in terms of LR(A) and CR(A) eigenfunc-
tions and eigenvalues yields the fluctuation correction to
the resistance as (hereafter we restore the physical units
and dimensions of the weak link)

δR ∼ − E2
Thd

e2kBTL

1
√

(τ−1 − Re ε0(E)/~)2 + (Γ(E) + γ)2
,

(14)

where d is the weak link thickness, Γ = Im ε0 and
τ−1 = 8(Tc − T )/π while Tc is the critical temperature
in the bulk. The resistance displays a pronounced volt-
age dependence in the range of parameters where either
~/τ ∼ ε0(E) or E ∼ Ec. So, δR(V ) behaviour can be con-
trolled via changing τ by cooling or heating the system.
The regime |E| < Ec when the system is PT -symmetric

favors fluctuational Cooper pairs. When |E| > Ec the
spectrum of fluctuation propagator becomes complex
that implies breaking of the Cooper pairs by the electric
field with the rate Γ̃ 6= 0 that increases with the increase
of E . It follows from Eqs. (13) and Eq. (14) that then the
correction to the resistance from the fluctuating Cooper
pairs quickly switches off. The same conclusion follows
from the investigation of the superconducting wire where
the P-symmetry is broken due to geometrical imperfec-
tion, see Fig. 2.
What we have investigated above was the behavior of

the superconducting fluctuations within the framework
of the quadratic Keldysh action describing the fluctua-
tions of the order parameter, see Ref. [11]. The natural
question that arises is whether the revealed bifurcation
picture retains in case of large fluctuations where one has
to go beyond the Gaussian approximation. We expect the
affirmative answer since the predicted instability follows
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FIG. 2. Evolution of the two lowest energy levels, ε0 and ε1
upon applying bias V = EL when the wire is not P-symmetric
[so PT -symmetry is also broken] due to the spatial variation
of the wire thickness d with 5% relative amplitude: a) d
fluctuates according to the gaussian law, ε0 is the red curve
and ε1 is the blue one and b) the wire width monotonically
changes, ε0 is the black curve and ε1 is the green one. In both
cases the bifurcation is smoothed and the energies become
complex below Ec. So Γ > 0 and as the result we get the
suppression of the fluctuational Cooper pair contributions to
the conductivity compared to the case of the P-symmetric
wire, see Fig. 1.

from the symmetry considerations analogous to those in
the general theory of the second phase transitions which,
as one can prove [11], do not change upon appearance
of the higher order terms. To cast the above reasoning
into a mathematical form we note that on the heuris-
tic level the large fluctuations would result in modify-
ing (3) into the nonlinear, but having the same symmetry,
Schrödinger equation. The corresponding generalization
of Eq.(3) has the form:

θ
′′

+ 2i(E + xE) sin θ = 0 , (15)

The boundary conditions at x = ±L/2 we take in a
more general form: θ(0) = θs1 and θ(L) = θs2, where
θs1,2 are parameterized as follows: θs1,2(E) = 1

2 (π +

i ln ∆+E∓V/2
∆−E±V/2 ), where ∆ is constant. [For E = 0 Eq. (15)

formally coincides with the Usadel equation [19] for the θ
angle parameterizing the quasiclassical retarded Greens
function in the superconducting weak link with the order
parameter ∆ in the reservoirs.]. Expanding sinh θ and
identifying 2iE with ǫ − τ−1 and θ with ψ one recov-
ers Eq.(3). We solved Eq. (15) numerically and found
that the first fold-bifurcation appears at Ec ≈ 5ETh/L
rather than ≈ 49ETh/L found in Eq.(3). We thus have
demonstrated that even in case of large fluctuations,
where the extension beyond the linear approximation is
required, the bifurcation of the fluctuation spectrum pre-
serves, while the value of the critical field Ec where it
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FIG. 3. The differential resistance of the superconducting
weak link. The left inset presents scanning electron micro-
scope image of the experimentally studied system, the con-
striction made by the electron beam lithography out of the
PtSi film of the thickness d = 6nm and having Tc = 560mK.
The details of the system preparation are given in [15]. The
right inset displays the full set of the differential resistance vs.
V dependences at different temperatures given in mK in the
legend. The central panel shows comparison of two exemplary
experimental curves (symbols), normalized to RN = 536Ω,
with the dV/dI calculated from Eqs. (8) and (14) (solid lines).
We took L = 0.4µm and D = 6 cm2/s [15], which gave
ETh = 2.5µeV, and chose ~Γ/ETh = 0.176.

occurs may change.

We have focused here on the superconducting wire of
relatively small length that generated us the characteris-
tic energy scale ETh. Our solution for the PT -symmetry
breaking bifurcation and the fluctuations heavily relied
on the discrete nature of Heff spectrum. In the infinite
geometry, L → ∞, ET → 0, and the spectrum of Heff

is continuous. Then there is no PT -symmetry break-
ing bifurcation. Taking the integral in Eq.(13) over the
continues spectrum of Heff we would get fluctuation cor-
rections to the resistance with the form different from
Eq. (14). Then the effective pair breaking electric field
Ec ∼ 1/ξτ [20] as follows from the uncertainty relation
between τ and Γ ∼ ξEc, where ξ =

√
Dτ .

In order to test our theory we designed the experiments
on mesoscale-patterned ultrathin PtSi wires having small
constriction, as shown in Fig. 3. The details of the sys-
tem preparation and parameters of the films are given in
[15] and the Supplementary. The constriction plays the
role of a weak link where fluctuation effects are expected
to be very strong. The dimensions and the material
characteristics were chosen to create the most favourable
conditions for manifestation of the PT -symmetry break-
ing effect in the system response to applied voltage bias.
Namely, since the characteristiv energy scale, ETh, is in-
versely proportional to L2, the length of the constriction

should not be too large in order to diminish the disguis-
ing effect of the thermal broadening. Another restriction
on L is dictated by the condition that the characteristic
drive EcL remained less than superconducting gap. At
the same time, in order to suppress Josephson coupling
which could prevail over the fluctuation contribution, one
has to take L ≫ ξN , where ξN =

√

~D/2πkBT is the
decay length for the pair amplitude in diffusive normal
conductor. Taking into account that, according to our
calculations, the characteristic energy scale where fluc-
tuations are important is about 10ETh, the above con-
ditions imply that L should not be much larger than 10
ξN .

Figure 3 shows the differential resistance, dV/dI, of
the superconducting weak link as function of the applied
voltage bias, V . Upon cooling the system down from the
critical temperature, the shape of the measured dV/dI-
V dependencies near V = 0, transforms from the convex
one, with the shallow minimum, into theW -shaped curve
with a peak at V = 0. With further decreasing temper-
ature, the central knob inverts, and dV/dI(V ) acquires
a pronounced progressively deepening V-shape develop-
ing on top of shallow minimum. Importantly, the width
of the deep remains equal to that of the maximum (see
the curves corresponding to T ≤ 450mK in the right in-
set to Fig. 3). The solid lines in the main panel present
the dV/dI vs. V dependences calculated according to
Eqs. (8) and (14), with Γ being the only fitting parame-
ter. The fit traces perfectly traces the temperature evo-
lution of dV/dI(V ), and, most strikingly, theW -shape at
T = 475K in all its details, including maxima in dV/dI
at |eV | ≈ 10ETh and the central knob 5ETh wide.

The similar behaviour of differential resistivity, the
evolution from the shallow minimum to maximum and
then to the dip again with the decreasing temperature,
was observed in Ref. [17], where the quest for the theo-
retical explanation of this effect was formulated. Using
the parameters given in Ref. [17] (see Fig. 2 there) we es-
timate ξN = 0.14µm at T = 1K, the bridge length being
2.8µm. Furthermore, the corresponding ETh ≃ 1.4µV,
and one sees that the characteristic voltage of “saddled”
shaped structure around zero bias in [17] is about 40ETh

in accord with our notion that the dV/dI features develop
on the voltage scale well exceeding Thouless energy.

As a final remark, we stress that the temperature
evolution of dV/dI shape results from the confluence
of the voltage-dependent fluctuation conductivity, stem-
ming from the Maki-Thompson and Aslamazov-Larkin
mechanisms, and the low-voltage quadratic dispersion
[ε0(V ) = ε0(0) + aV 2, see Fig.1] of the ground state en-
ergy. Importantly, the width of the central knob/peak
is ≈ 5ETh, in a contrast to the more narrow dip in the
tunnelling conductivity [16] (the knob in dV/dI corre-
sponds to the groove in dI/dV ), having the width of
|eV | ≈ ETh reflecting the suppression of the electronic
density of states by the proximity effect. The observed
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effect also differs from the zero-bias conductance peak in
NS and SNS junctions at low temperatures [18] originat-
ing from the phase-coherent Andreev reflection.

In conclusion, we have demonstrated that the PT -
symmetry favors fluctuating Cooper pairs in the super-
conducting weak link. We have found that the applied
electric field exceeding the critical value, Ec, breaks down
the PT -symmetry and destroys the superconducting fluc-
tuations in the weak link and derived the expression for
Ec. Combining effects of superconducting fluctuations
and the low-voltage dispersion of the ground state energy
of the effective non-Hermitian Hamiltonian of the fluc-
tuating Cooper pairs we have quantitatively described
the experimentally observed differential resistance of the
weak link in the vicinity of the critical temperature.
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