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Resonating valence bond (RVB) states are of crucial importance in our intuitive understanding
of quantum spin liquids in two dimensions (2D). We systematically classify short-range RVB states
into symmetric or nematic spin liquids, by examining their flux patterns. We further map short-
range RVB states into projected BCS wave functions, on which we perform large-scale Monte Carlo
simulations without the minus sign problem. Our results clearly show that both spin and dimer
correlations decay exponentially in all the short-range frustrated RVB states we studied, indicating
that they are gapped Z2 quantum spin liquids. Generically, we conjecture that all short-range
frustrated RVB states in 2D have short-range correlations.

Introduction: Quantum spin liquids are exotic in-
sulators which cannot be adiabatically connected into
a band insulator and which can support fractional-
ized excitations[1]. Introduced by Anderson nearly four
decades ago[2], the resonating valence bond (RVB) state
on the triangular lattice is the first example of quantum
spin liquids in more than one dimension. Since then,
there have been keen interest of searching for such exotic
states of matter in real materials as well as in micro-
scopic models, especially after exciting connections be-
tween quantum spin liquids and the mechanism of high
temperature superconductivity were suggested[3–5].

Recently, there is a surge of numerical simulations on
simple models reporting convincing evidence of the ex-
istence of fully gapped spin liquids[6–11], all of which
are believed to be in the same class of short-range
RVB states. Nonetheless, the nature of short-range
RVB states on various frustrated lattices has not been
revealed[12, 13], mainly because of the so-called minus
sign problem in Monte Carlo (MC) simulations of those
bosonic short-range RVB states with frustration. Due to
their conceptual importance in pictorially understand-
ing quantum spin liquids and their direct relevance in
recent numerical simulations, it is highly desired to un-
ambiguously demonstrate the nature of these short-range
bosonic RVB states.

In this paper, we systematically classify short-range
RVB states by examining their flux patterns [14]. For in-
stance, for the Kagome lattice we establish that there are
only four symmetric and four nematic RVB states when
considering only nearest-neighbor (NN) valence bonds as
shown in Fig. 1 and 5(a) respectively. Then, we show
that these bosonic short-range RVB states can be ex-
actly mapped into projected BCS wave functions[17–19]
on which we perform large-scale MC simulations without
the minus sign. For frustrated short-range RVB states,
our simulations on corresponding projected BCS states
convincingly show that both their spin and dimer corre-
lations decay exponentially, indicating that they are fully
gapped Z2 spin liquids[20, 21].

Bosonic RVB states: We consider the following
bosonic RVB states with NN and possibly next nearest-
neighbor (NNN) valence bonds

|ψRVB〉 =
∑

c

|c〉 , |c〉 = (−1)δc
∏

(ij)∈c

fij |ij〉 , (1)

where c labels valence bond configurations and δc repre-
sents the number of bond-crossings in c [the factor (−1)δc

is nontrivial only for RVB states with valence bonds
beyond nearest-neighbor sites.] Here |ij〉 ≡ (|↑i↓j〉 −
|↓i↑j〉)/

√
2 is the spin-singlet wave function (or valence

bond) on (ij) and we assume |fij | to respect all the lattice
symmetries. Note that Eq. (1) represents a “bosonic”
RVB state in the sense that |↑i↓j〉 = |↓j↑i〉. Since
|ij〉 = − |ji〉, it is sufficient to consider fij = −fji. The
wave function in Eq. (1) possesses a gauge symmetry:
|ψRVB〉 is invariant, up to a phase, under the transfor-
mation fij → eiαifije

iαj . In the following, we focus on
time reversal invariant RVB states for which all fij are
real; signs of fij can be represented by oriented arrows on
graphs: an arrow pointing from i to j means that fij > 0,
as shown in Fig. 1. We further define flux φp = 0, π (mod
2π) for plaquette p through

cc
∏

(jk)∈p

sgn(fjk) = exp(iφp) (2)

where cc means that the counterclockwise order of (jk) is
taken in the product above and sgn is the sign function.
It is clear that φp is invariant for even-length plaquette
p. However, the gauge transformation with exp(iαj) = i
on every site j changes φp to φp + π for all odd-length
plaquette p. In other words, the two wave functions with
flux pattern {φp} and {φp + (−1)npπ} (np is the length
of plaquette p) actually represent the same state [22].
There are two questions concerning the wave function

in Eq. (1) to be answered. First, is it a symmetric spin
liquid respecting all the symmetries of the lattice in ques-
tion? Second, do various correlations decay in power law
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FIG. 1: (a) The flux patterns {φp} of the only four symmet-
ric NN-RVB states on the Kagome lattice. Here ex and ey

represent the unit vectors. (b) The flux patterns {φf
p} in the

corresponding projected BCS states.

or exponentially? The first question can be answered
by examining its flux pattern {φp}. If the flux pattern
{φp} is invariant up to the addition of {(−1)npπ}, under
all lattice symmetry transformations such as translations,
rotations, and reflections, the corresponding RVB state is
then a symmetric spin liquid state . We label RVB states
with longest valence bonds between NN (NNN) sites as
NN-RVB (NNN-RVB) states. On the Kagome lattice, we
identify four NN-RVB states as symmetric spin liquids,
as shown in Fig. 1. On the triangular lattice, only two
symmetric NN-RVB states are found, as shown in Fig.
2. On the square lattice, there are two symmetric NN-
RVB spin liquids and four symmetric NNN-RVB states,
as shown in Fig. 3.
For these symmetric RVB spin liquids, it is not known

a priori whether various correlations decay in power law
or exponentially. Generically, numerical MC simulations
are capable of revealing those features[24]. The correla-
tions of a physical quantity O are given by

〈OiOj〉 =
〈ψRVB|OiOj |ψRVB〉

〈ψRVB|ψRVB〉
,

=

∑

c,c′ 〈c|c′〉
[

〈c|OiOj|c′〉
〈c|c′〉

]

∑

c,c′ 〈c|c′〉
, (3)

where 〈c|c′〉 (| 〈c|c′〉 |) can be taken as statistical weight in
MC simulations when they are positive (negative). When
〈c|c′〉 ≥ 0 for any c and c′, we call such states unfrustrated
RVB states. For instance, for the square lattice NN-
RVB state with {φp = 0}, 〈c|c′〉 ≥ 0 for any c and c′

and it is an unfrustrated NN-RVB state; large-scale loop-
algorithm MC simulations[25] were performed recently
on this wave function reporting convincing evidence that
the square unfrustrated NN-RVB state is critical with
power-law decaying dimer corrections[26, 27].
However, when it is impossible to choose 〈c|c′〉 ≥ 0

for all c and c′, we define such states as frustrated RVB

Kagome NN-RVB state A B C D

ξs 0.6 0.6 0.6 0.7

ξd 1.2 1.0 1.0 0.9

E/J −0.393 −0.36 −0.357 −0.386

TABLE I: The spin (ξs) and dimer (ξd) correlation lengths
of the four symmetric states on the Kagome lattice shown
in Fig. 1. Here E labels the variational energy per site of
those symmetric states for the Kagome NN antiferromagnetic
Heisenberg model H = J

∑

〈ij〉

Si · Sj .

states. Frustrated RVB states include NN-RVB states
on frustrated lattices (e.g. the triangular and Kagome
lattices), NNN-RVB states on the square lattice, and the
{φp = π} NN-RVB state on the square lattice. It is
clear that loop-algorithm MC simulations on frustrated
RVB states suffer from the minus sign problem in the
variational level. In the following, we shall show that
the RVB states in Eq. (1) can be exactly mapped into
Gutzwiller projected BCS states, which are friendly to
MC simulations without the minus sign problem.
Projected BCS states: It was known that varia-

tional Monte Carlo method has been quite successful in
simulating Gutzwiller projected BCS wave functions. We
consider the following projected BCS wave functions:

|ψp-BCS〉 = PG exp





∑

(ij)

gij(c
†
i↑c

†
j↓ − c†i↓c

†
j↑)



 |0〉 , (4)

where c†iσ are electron creation operators, |0〉 is the vac-
uum, PG is the Gutzwiller projection onto singly oc-
cupied states, and gij = gji which are assumed to be
real. A similar gauge symmetry exists for the pro-
jected BCS wave functions: the wave function is invari-
ant, up to a phase, under the transformations: gjk →
exp(iαf

j )gjk exp(iα
f
k). For time reversal invariant states

with real gjk, we define fermionic fluxes φfp through
∏

(jk)∈p sgn(gjk) = exp(iφfp) with φfp = 0, π (mod 2π).

Similarly, the flux pattern {φfp} and {φfp + (−1)npπ} are

equivalent through the gauge transformation exp(iαf
j ) =

i on all sites j. As shown in details in the Appendix, we
obtain |ψp-BCS〉 = |ψRVB〉 when the following conditions
are satisfied:

|gjk| = |fjk|, φp = φfp + π, (5)

where p labels all possible elementary plaquettes.
Ground state correlations: We have investigated

a number of short-range frustrated RVB states by per-
forming MC simulations on their corresponding projected
BCS wave functions. In our numerical calculations, we
mainly focus on spin as well as dimer correlations and
study whether they fall off in power law or exponentially
at large distance. The spin and dimer correlations are
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FIG. 2: The flux patterns {φp} of the two symmetric NN-RVB
states on the triangular lattice.

defined as follow:

S(~l) =
〈

S~ri · S~ri+~l

〉

,

Dα(~l) =
〈

(

S~ri · S~ri+eα

)(

S
~ri+~l

· S
~ri+~l+eα

)

〉

−〈S~ri · S~ri+eα
〉2 ,

where eα labels lattice vectors.
We have studied all the four symmetric NNN-RVB

states on the square lattice, the four symmetric NN-RVB
states on the Kagome lattice, and the two symmetric
NN-RVB states on the triangular lattice. As discussed
in details later, for all these frustrated RVB states our
MC simulations convincingly show that their spin and
dimer correlations fall off exponentially with correlation
length in the order of one lattice constant, indicating
that they are all gapped Z2 quantum spin liquids. (Note
that different symmetric spin liquid states on the same
lattice may be distinguished by numerically computing
local correlations.) We conjecture that our results are
generic: all frustrated short-range RVB states in 2D are
fully gapped.
The Kagome lattice: According to the flux pattern

(either {φp} or {φfp}) on the Kagome lattice, it is
straightforward to show that there are four symmet-
ric NN-RVB spin liquids, as shown in Fig. 1. We
have computed the spin and dimer correlations for all
the four symmetric NN-RVB spin liquids. In Fig. 4,
we plot the spin and dimer correlations as a func-
tion of distance (l) in one of those NN-RVB symmetric
states, i.e. the counterclockwise-counterclockwise NN-
RVB state (A) shown in Fig. 1. The MC calculations
are carried out on a lattice with 18 × 18 × 3 sites and
with periodic boundary conditions. It is remarkable that
the correlations decay extremely fast. From Fig. 4, it is
clear that both spin and dimer correlations decay expo-
nentially in distance. The spin correlation length ξs for
this NN-RVB state is about 0.6 lattice constants. The
dimer correlation lengths ξd,x and ξd,y for Dx(lex) and
Dx(ley) are nearly equal, which are about 1.2 lattice
constants. The spin and dimer correlation lengths [ξs
and ξd ≡ (ξd,x + ξd,y)/2), respectively] for all the four
symmetric NN-RVB spin liquids are listed in Table I.
The correlation lengths are all in the order of one lat-
tice constant, indicating that they are fully gapped Z2

quantum spin liquids. This is consistent with the recent
DMRG evidence that the ground state of the Kagome
Heisenberg antiferromagnet is a fully gapped quantum

( )(a)
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(b)(b)

(A) (B) (C) (D)

FIG. 3: The flux patterns {φp} of the two symmetric NN-
RVB states (a) and the four symmetric NNN-RVB states (b)
on the square lattice.

square NNN-RVB state A B C D

ξs 1.1 0.8 0.7 0.6

ξd,NN 1.2 1.6 1.3 1.4

ξd,NNN 0.6 0.6 0.6 0.5

E/J1 −0.344 −0.219 −0.237 −0.239

TABLE II: The correlation lengths and variational energies
of the four symmetric NNN-RVB states on the square lattice.

spin liquid[8, 9] with correlation lengths of about one
lattice spacing[9].
To get a sense which state above is the best variational

wave function for the Kagome antiferromagnet described
by H = J

∑

〈ij〉 Si · Sj , we compute their variational en-
ergy per site as shown in Table I. Among the four sym-
metric NN-RVB spin-liquid states, the counterclockwise-
counterclockwise NN-RVB state has the lowest energy
for the Kagome antiferromagnet, which is −0.393J per
site. This energy still differs from the DMRG result, in-
dicating that longer-range valence bonds are important
in describing the Kagome antiferromagnet.
The triangular lattice: It turns out that there are only

two symmetric NN-RVB spin liquid states on the triangu-
lar lattice, whose flux patterns {φp} are shown in Fig. 2.
For both states, the spin and dimer correlations decay ex-
ponentially with distance, with ξs = 0.7 and ξd = 1.0 for
the state (A) shown in Fig. 2 and ξs = 1.0 and ξd = 1.6
for the state (B) shown in Fig. 2. Both NN-RVB states
are then gapped Z2 spin liquids. The correlation lengths
on the triangular lattice are somewhat longer than those
on the Kagome lattice, which is expected due to more
geometric frustrations in the Kagome lattice.
The square lattice: It was shown recently that the un-

frustrated NN-RVB state on the square lattice is a criti-
cal state with power-law dimer correlations even though
its spin excitations are gapped[26, 27]. To have a fully
gapped spin liquid phase on this lattice, it is necessary to
include frustration in short-range RVB states. One can-
didate is the frustrated NN-RVB state with {φp = π},
called negative RVB in Ref. [28], in which 〈c|c′〉 < 0
when c and c′ are related by one elementary flip. In
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FIG. 4: The spin and dimer correlations as a function of
distance in the NN-RVB state (A) shown in Fig. 1.

this paper, we consider the other choice, namely includ-
ing NNN valence bonds, which is partly motivated by a
recent study establishing that fully gapped spin liquid
ground states are realized in the generalized[29] quan-
tum dimer models[30] with NN and NNN dimers on the
square lattice. (Note that the nature of NNN RVB states

in Eq. (1) without the factor (−1)
δc remains unknown

due to the lack of mapping between them and projected
BCS states.)

From the flux pattern {φp}, we have identified four
symmetric NNN-RVB states on the square lattice, as
shown in Fig. 3(b). For each of these four states, there
is an additional parameter labeling the wave function,
namely the ratio γ ≡ |fNNN/fNN|. We take γ = 1 in our
MC simulations. For γ = 1 both spin and dimer correla-
tions decay exponentially with distance. The correlation
lengths are listed in Table II, where ξd,NN and ξd,NNN

mean the correlation lengths of NN and NNN dimers,
respectively. At γ = 1 (more generally γ > 0), we con-
clude that the four symmetric NNN-RVB states are fully
gapped Z2 spin liquids, which is consistent with the re-
cent numerical evidence of fully gapped spin liquids in the
J1-J2 square Heisenberg antiferromagnet[10, 11]. The
variational energies of these NNN-RVB states in unit of
J1 for the J1-J2 square Heisenberg model with J2 = J1/2
are shown in Table II.

Nematic RVB spin liquids: We have studied fully
symmetric short-range RVB spin liquids on various lat-
tices. An interesting question is whether short-range
RVB states could be nematic spin liquids which are trans-
lationally invariant but break lattice point group symme-
try. The answer is yes. On the Kagome lattice, we iden-
tified that there are only four NN-RVB states which are
nematic spin liquids, as shown in Fig. 5(a). On the tri-
angular lattice, there are two nematic NN-RVB states, as
shown in Fig. 5(b). Our MC simulations show that the
correlation functions of spins and dimers in these states
decay exponentially with distance but the C6v symmetry
of both lattices is broken. They are fully gapped nematic
spin liquids, in contrast with gapless nematic spin liquids
on the triangular lattice studied in Ref. [31].

On the square lattice, we found six nematic NNN-RVB

(a)(a)

(b)

(c)(c)

FIG. 5: The flux patterns {φp} of (a) the four nematic NN-
RVB states on the Kagome lattice, (b) the two nematic NN-
RVB states on the triangular lattice, and (c) the six nematic
NNN-RVB states on square lattice.

spin-liquid states, which are shown in Fig. 5(c). These
spin-liquid states keep the translational symmetry but
breaks the C4v rotational symmetry of the square lat-
tice. Again, our MC simulations show that they are fully
gapped nematic spin liquids.
Concluding discussions: On the square (or honey-

comb) lattice, there are two kinds of symmetric NN-RVB
spin-liquids. The {φp = 0} NN-RVB state is unfrus-
trated with power-law decaying dimer correlations[26,
27]. While the {φp = π} NN-RVB state is frustrated, our
MC simulations on the square lattice with 20 × 20 sites
cannot tell whether its dimer correlation decays exponen-
tially or in power law. Studies on larger lattices are neces-
sary in the future to identify its nature. Nonetheless, we
conjecture that all short-range 2D frustrated RVB states
exhibit only short range correlations.
A recent loop-algorithm MC study shows that the un-

frustrated NN-RVB states on the cubic and diamond
lattices show magnetic long-range order[32]. Properties
of frustrated NN-RVB states on 3D lattices remain un-
known partly due to the minus sign problem in loop-
algorithm MC simulations. We can generalize the map-
ping between short-range RVB states and projected BCS
states discussed in the present paper to three dimensions.
Consequently, we can solve the minus sign problem for
a class of frustrated short-range RVB states, which is
a significant step towards understanding the nature of
short-range frustrated RVB states in 3D.
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