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Correlation functions in SU(2) invariant RVB spin liquids on non-bipartite lattices
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We introduce a Monte Carlo scheme based on sampling of Pfaffians to investigate Anderson’s
resonating-valence-bond (RVB) spin liquid wave function on the kagome and the triangular lattice.
This eliminates a sign problem that prevents utilization of the valence bond basis in Monte Carlo
studies for non-bipartite lattices. Studying lattice sizes of up to 600 sites, we calculate singlet-
singlet and spin-spin correlations, and demonstrate how the lattice symmetry is restored within each
topological sector as the system size is increased. Our findings are consistent with the expectation
that the nearest neighbor RVB states describe a topological spin liquid on these non-bipartite
lattices.

Introduction. It has been almost four decades since
Anderson proposed[1] the quantum spin liquid state. Its
undiminished appeal stems from a variety of applications
from high temperature superconductivity[2] to quantum
computing[3, 4]. The nature of the short ranged variant
of Anderson’s “resonating valence bond” (RVB) spin liq-
uid as a topological phase became understood through a
series of papers[5–7]. In particular, the invention of quan-
tum dimer models[7] as an approximation to spin models
finally lead to a lattice model exhibiting a topological
RVB liquid phase[8, 9]. This however, did not immedi-
ately address the (original) question whether this exotic
phase could be stabilized within the phase diagram of
SU(2)-invariant local spin-1/2 Hamiltonians. This was
subsequently established for highly decorated lattices[10]
and certain bipartite lattices[11], by finding a parent
Hamiltonian for the simplest, i.e., nearest neighbor ver-
sion of the prototypical RVB spin liquid wave function on
such lattices. Work on quantum dimer models[8, 12–14],
however, strongly suggests that nearest neighbor RVB
states should be critical on bipartite lattices, as demon-
strated recently[15, 16]. They should describe a Z2-spin
liquid with exponentially decaying correlations only in
the non-bipartite case. While rigorously proven in the
quantum dimer case, it is highly non-trivial to estab-
lish this statement for the spin-1/2 RVB wave functions,
due to orthogonality issues (cf, e.g., [17]). In the non-
bipartite case, the nature of the correlation functions
of the local spin and valence bond operator has not yet
been studied systematically. This is largely due to a sign
problem that will be addressed in this work. We finally
mention that for the kagome case, the short ranged RVB
state studied here has been proven to be the ground state
of a local parent Hamiltonian[18] (cf. also [19, 20]). The
present work will provide essential evidence from correla-
tions demonstrating that the kagome lattice RVB-ground
state of the Hamiltonian given in [18] is a topological (Z2)
spin liquid.

Method. The standard method for calculating correla-
tions of these wave functions on bipartite lattices is based
on the observation that a general correlator between two

FIG. 1: The dimer-dimer correlation function shown for
kagome lattices with PBCs and OBCs. Insensitivity to system
size and short correlation length are evident. The PBC case
has been calculated within a fixed topological sector. The in-
set shows a logarithmic plot including a linear fit, yielding a
correlation length of 1.12(3).

local operators O1 and O2 takes on the form

〈RVB|O1O2|RV B〉

〈RV B|RV B〉
=

∑
D,D′〈D|O1O2|D

′〉
∑

D,D′〈D|D′〉
. (1)

Here D and D′ represent dimerizations of the lattice,
the sums run over all possible dimerizations, |D〉 is a
nearest neighbor valence bond (NNVB) state associated
with a given dimerization and a link orientation of the
lattice (defined below), and |RV B〉 is the RVB state,
|RVB〉 =

∑
D |D〉. Since every pair of dimer config-

urations D,D′ corresponds to a configuration of non-
intersecting close packed loops on the lattice, Sutherland
pointed out [21] that the evaluation of such correlation
functions may be reduced to the study of a classical loop
gas model. This is so provided that the overlaps 〈D|D′〉
are strictly non-negative. Otherwise, the evaluation of
these correlators through Monte Carlo methods suffers
from a sign problem. Indeed, it is not difficult to show
that, e.g., for the kagome lattice, for any sign conven-
tion for the states |D〉 some of the overlaps 〈D|D′〉 are
always negative. It is clear that such a sign prob-
lem would never arise were we to work with an orthog-
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FIG. 2: a) Shape of the kagome lattice used in the calcula-
tions. The lattice consists of m unit cells in the a direction
and n unit cells in the b direction, for a total of 3mn sites.
Periodic boundary conditions may or may not be introduced
with periods ma and nb. b) The orientation used in the sign
convention for the triangular lattice.

onal basis. In this case only strictly positive diagonal
terms appear in the denominator of the expression re-
placing Eq. (1). An obvious candidate for such a ba-
sis is the “Ising”-basis where local spins have definite z-
projection, |RV B〉 =

∑
I aI |I〉, and I runs over all pos-

sible Ising spin configurations. Two primary questions
need to be addressed to determine whether the Ising-
representation lends itself to Monte-Carlo evaluation of
correlations. The first is the obvious question whether
for the wave function |RV B〉, the coefficients aI in the
above representation can be efficiently calculated. The
second question relates to the observation that for the
short-ranged RVB state |RV B〉, it turns out that only a
small fraction of configurations I will lead to non-zero aI .
One may, however, ask if once an I with non-zero aI is
found, a sufficiently local update of I has a high chance
of leading to a new I ′ with aI′ 6= 0. To proceed, we first
need to express the wave function |RVB〉 in the Ising ba-
sis. We observe that in the Ising basis, the wave function

FIG. 3: The dimer-dimer and spin-spin correlation func-
tions for a 400 sites triangular lattice with OBCs. The inset
shows logarithmic plot with fits, giving a correlation length of
1.15(2) for the dimer-dimer decay. The spin-spin correlations
display stronger even/odd effects at short distance. Fitting
only odd distances in the spin-spin case gives a correlation
length of 1.61(2).

FIG. 4: The spin-spin correlation functions 〈~Si
~Si+κ〉 and

〈Sz

i S
z

i+κ〉 for different kagome lattices (PBC and OBC).
Again, the topological sector was fixed in the PBC case. The
inset shows a logarithmic plot with linear fit yielding a corre-
lation length of 2.08(2).

FIG. 5: The expectation value of the dimer operator for links
of the three possible directions and various lattice sizes. The
average for one system size is shown as horizontal bar. A
topological sector has been fixed. The discrepancy between
inequivalent links rapidly decreases with system size, restoring
the lattice symmetry.

|RVB〉 can be naturally written as a “Haffnian”[22]:

aI = Haff[Mij(I)] ≡
1

2N/2(N
2
!)

×

∑

λ∈SN

Mλ1λ2
(I)Mλ3λ4

(I)× · · · ×MλN−1λN
(I) . (2)

Here, M is a symmetric matrix whose indices run over
the N lattice sites and which depends on the Ising con-
figuration via Mij(I) = Θij(δσi,↑δσj ,↓−δσi,↓δσj ,↑), where
the σi describe the Ising configuration I. λ runs over all
permutations of the N sites, and Θij is the matrix de-
scribing the chosen orientation of the lattice. An orienta-
tion refers to a relation defined between any two nearest
neighbor lattice sites i, j, according to which either i < j
or i > j holds. Then Θij = 0 if i, j are not nearest
neighbors, Θij = 1 for i > j, and Θij = −1 for i < j.
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Here we consider the orientation chosen for the kagome
lattice indicated by the arrows in Fig. 2a. The formal
definition of the Haffnian is related to that of the Pfaf-
fian through omission of the sign factor (−1)λ. While the
Pfaffian and the determinant can be evaluated in poly-
nomial time, it is not known how to do this for the other
two cases. It would thus be desirable to rewrite Eq. (2)
through a Pfaffian. Luckily, this is the same problem that
Kasteleyn solved long ago[23], which has been a standard
tool in the study of classical and quantum dimer mod-
els. In the present context, it does not seem to have
enjoyed much attention. Kasteleyn evaluated the parti-
tion function of the classical dimer gas, which is exactly
Eq. (2) with Mij replaced by |Θij |. He found that this
problem may be written as Pfaff[|Θij |Θ

K
ij ] where Θ

K is a
matrix similar to Θ, but describing a different, so-called
“Kasteleyn” orientation of the lattice. For planar lattice
graphs, such an orientation may generally be found. A
Kasteleyn orientation for the kagome lattice is given in
[24]. The same method works in Eq. (2) [22]. We thus
have aI = Pfaff[Mij(I)Θ

K
ij ]. We are now in a position to

cast the problem of evaluating the correlation functions
(1) as a classical statistical mechanics problem. We have:

〈RVB|OiOj |RV B〉

〈RV B|RVB〉
=

∑
I

∑
I′ aIaI′〈I ′|OiOj |I〉∑

I |aI |
2

=

∑
I |aI |

2
∑

I′

aI′

aI
〈I ′|OiOj |I〉∑

I |aI |
2

.

(3)

This may now be interpreted as the classical expectation
value of a quantity f : 〈f〉 =

∑
I fIe

−EI/
∑

I e
−EI . Here,

e−EI = |aI |
2 and the value fI of the quantity f in the

Ising configuration I is given by fI =
∑

I′ 〈I ′|OiOj |I〉
aI′

aI
.

We have now demonstrated that the evaluation of cor-
relation functions can be cast in terms of a partition func-
tion, whose weights are positive and can be evaluated in
polynomial time (the structure of our Pfaffian in fact
allows reduction to the determinant of an N/2 × N/2
matrix). Returning to our earlier caveat, we moreover
found that once we have an initial Ising configuration
I with aI 6= 0, performing updates[22] by exchanging
neighboring spins has a high chance of leading to a new
configuration I ′ with aI′ 6= 0, The basic requirements for
Monte Carlo evaluation are thus met.
Results. Simulations are now performed for differnt

lattices sizes. For the kagome lattice, we have chosen
(m,n) as defined in Fig. 2 to be (10,5) for periodic bound-
ary conditions (PBCs) and to be (20,8) and (20,10) for
open boundary conditions (OBCs), resulting in a total
number of N = 150, 480, and 600 sites, respectively,
(and in lattices with roughly unit perpendicular aspect
ratio). For the triangular lattice, we show data belong-
ing to a 20×20 “square” with diagonals (see Fig. 2) giving
a lattice of 400 sites. In one Monte Carlo sweep through
the lattice, we attempt to do a number of N exchanges

of two neighboring spins. All expectation values were
calculated by making about 1,500,000 measurements on
the configurations produced by the Monte Carlo process,
allowing the system to equilibrate for 8000 sweeps. Au-
tocorrelation times are generally quite low, on the order
of 1.
Fig. 1 presents the connected correlation function of

the “dimer” or valence bond operator ~Si · ~Si+x, where
i and i + x are nearest neighbors, for different lattice
sizes and boundary conditions. It is evident that there
is a finite and very short correlation length. From the
inset it is clear that the absolute values of the correla-
tion functions follow a simple exponential law already
at short distance, from which we obtain a correlation
length of ξ = 1.12(3). Moreover, the plot for 600 sites
and OBCs coincides very well with that for 150 sites and
PBCs. We note that for the case of PBCs, the method
used to treat the classical dimer case[24] can again be
adapted to the present situation, and yields an expres-
sion of the amplitude aI as a superposition of four Pfaffi-
ans. Different such superpositions can be used to project
onto different topological sectors of the toroidal system.
While only one topological sector is shown, we have also
convinced ourselves that results for different topological
sectors agree within error bars. The fact that the dimer-
dimer correlations are apparently insensitive to both lat-
tice size and boundary conditions, already for a relatively
small size of 150 sites, is consistent with the hypothesis
of a gapped state. We note moreover that the decay
is very reminiscent of the quantum dimer model case,
where dimer-dimer correlations have been shown to de-
cay super-exponentially, with correlations being exactly
zero beyond distance 2[25]. While this is clearly not the
case for the RVB state, a very short correlation length
of order 1 still mimics this behavior fairly closely. The
qualitative agreement between the quantum dimer model
and the RVB state is thus quite striking.
Fig. 3 shows the dimer-dimer correlations for a 400

site triangular lattice, displaying similarly short ranged
correlations. Subdominant corrections to the dominant
exponential decay are clearly somewhat more important
than for the kagome, as one would generically expect;
however a correlation length close to 1.6 is still clearly
visible in the inset. All linear fits are obtained from a
weighted least square regression, where the weights have
been chosen as the inverse squares of the error bars. Note
that although the value at distance zero has not been in-
cluded into any fit, even this shortest distance data point
tends to follow the exponential trend very well. We point
out that a sign convention for the triangular lattice exists
which eliminates the sign problem of Eq. (1) [26]. Here,
however, we have chosen a different convention (Fig. 2b),
for which this problem persists.
We also computed spin-spin correlation functions 〈~Si ·

~Sj〉. Results are shown for the kagome in Fig. 4 and
for the triangular lattice in Fig. 3. Spin-spin corre-
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lations decay exponentially even in the critical square-
lattice case[27], and by theoretical prejudice should de-
cay exponentially for all short ranged RVB states. More-
over, even on the kagome, DMRG work has predicted
a spin liquid phase with gapped spin but gapless sin-
glet excitations[28]. This might render the singlet sec-
tor more crucial in the present context. Nonetheless,
direct demonstration of the exponential decay of spin-
spin corelations is not straightforward, especially in the
presence of the sign problem discussed initially. Again,
the short-ranged nature of the correlations is apparent in
both cases. As a consistency check, both 〈~Si · ~Sj〉 and
3〈Sz

i S
z
j 〉 are shown, which must agree by SU(2) sym-

metry. This symmetry is, however, not manifest in the
Ising-basis we are working with[34].

Up to now we have demonstrated that connected corre-
lations for the RVB-states on the kagome and triangular
lattice are short ranged. This does, however, by itself not
guarantee the liquid property of these states. In particu-
lar, the four degenerate RVB ground states on the torus
transform non-trivially under the space group of the lat-
tice, and to demonstrate the liquid property and rule out
the possibility of a valence bond solid [29], it is essential
to show that the full lattice symmetry is restored in the
thermodynamic limit, for each individual ground state
(within each topological sector). We restrict ourselves to
the kagome lattice here. In the following, we will refer to
lattice links as “symmetry inequivalent” if they are not
related by a symmetry of the wave function (even though
they may be related by a symmetry of the lattice). For
lattices of the shape shown in (Fig. 2a), with m, n both
even, any three links along different directions will al-
ways exhaust all possible classes of inequivalent links. In
Fig. 5, we plot the expectation values of the dimer op-
erator for three such links, evaluated in one topological
sector, for various “even/even” lattices. One observes
that the discrepancy between inequivalent links rapidly
decreases, by a factor of at least 60 between 24 sites and
48 sites, taking into account error bars. (The consistency
between symmetry equivalent links suggests that the er-
ror is much smaller than shown, and the factor is really
on the order of 100). For larger lattice size, the calcula-
tion becomes increasingly demanding, since, presumably,
increasingly smaller error bars are needed to resolve the
discrepancy in expectation values, while even maintain-
ing the size of the error bars is more costly (Fig. 5). It is
worth noting, though, that the average of the three ex-
pectation values for 72 and 96 sites appears to have con-
verged, and we are thus approaching the thermodynamic
limit. In all, these findings are highly consistent with
the general expectation that the RVB-states describe a
topological spin liquid.

Conclusion. In this work, we have studied correlation
functions of nearest neighbor resonating valence bond
wave functions on both the kagome and the triangular
lattice, with up to 600 lattice sites. A sign problem of

earlier methods has been circumvented by using a Pfaf-
fian representation of the wave function in the Ising basis.
This allows for evaluation of correlators for both OBCs
and PBCs, and, in the latter case, restriction to a single
topological sector. This allowed us to present strong ev-
idence that not only correlations decay exponentially as
expected, but also that no broken lattice symmetry re-
mains in the thermodynamic limit for the kagome lattice.
For the kagome, this greatly adds to the amassed evi-
dence that local SU(2) invariant Hamiltonians stabilizing
a topological spin liquid state are possible[18, 30]. Fur-
ther possible applications of our method include the in-
vestigation of short-ranged RVB wave functions on other
non-bipartite lattices. In particular, certain next near-
est neighbor links may be introduced in standard lattice
geometries such as the square lattice[31], as long as the
planarity of the lattice is maintained. This makes it nat-
ural to introduce different weights for different types of
valence bonds. Furthermore, our method allows for the
introduction of any number of mobile (delocalized) holes
and thus the study of monomer correlations and the re-
lated confinement/deconfinement issue. We are hopeful
that these prospects will stimulate future work.
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