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Engineering nano-mechanical quantum systems possessing ultra-long motional coherence times allows for
applications in precision quantum sensing and quantum interfaces but to achieve ultra-high motional Q one
must work hard to remove all forms of motional noise and heating. We examine a magneto-mesomechanical
quantum system that consists of a 3D arrangement of miniature superconducting loops which is stably levitated
in a static inhomogenous magnetic field. The motional decoherence is dominantly due to loss from induced
eddy currents in the magnetised sphere which provides the trapping field ultimately providing for Q ∼ 109

with motional oscillation frequencies of several hundreds of KHz. By inductively coupling this levitating object
to a nearby driven flux qubit one can cool it’s motion very close to the ground state and this may permit the
generation of macroscopic entangled motional states of multiple clusters.

PACS numbers: 42.50.Lc, 74.25.Ld,45.80.+r, 85.85.+j

Recently there has been considerable effort towards map-
ping the boundary between the classical and the quantum
world by exploring the physics of mesoscopic and macro-
scopic mechanical systems. From an applications point of
view, as precision measurement of position and acceleration
generally involve some kind of motion, the necessity of build-
ing smaller and more sensitive devices has required a more
careful exploration of the classical-quantum limit. The possi-
bility to couple, control and measure meso-mechanical mo-
tion in a wide range of different physical systems leads to
new experimental applications in diverse fields such as mea-
suring forces between individual biomolecules [1–3], mag-
netic forces from single spins [4], perturbations due to the
mass fluctuations involving single atoms and molecules [5],
pressure [6] and acceleration [6], fundamental constants [7],
small changes in electrical charge [8], gravitational wave de-
tection [9], and applications in quantum computation [10],
quantum optics [11] and condensed matter physics [12, 13].

Observing any quantum properties of a mechanical system
is a challenge. Under typical conditions, energy losses, ther-
mal noise and decoherence processes make it impossible to
observe any motional quantum effects. To observe quantum
mechanical motional effects the system has to be close enough
to its ground state and it has to preserve this quantum coher-
ence for a reasonable amount of time. This leads to the ne-
cessity of engineering ultra-low dissipative systems which, in
oscillating systems, is measured by the quality factor Q repre-
senting the energy lost per cycle. To achieve this one must
engineer a system which is mechanically isolated from it’s
surroundings to an extreme level. On the other hand one must
also find a way to cool down the motion close to its motional
ground state which necessities coupling that system to another
in order to dump entropy. Numerous mesomechanical oscil-
lating systems have been recently studied such as cavity op-
tomechanical experiments employing cantilevers [14], micro-
mirrors [15, 16], micro-cavities [17, 18], nano-membranes
[19], macroscopic mirror modes [20] and optically levitated
micro- [21] and nano-spheres [22] (see [23]). As shown in
Ref. [24], it has been possible to create and control quantum

states but, except in a few cases, reaching large Q for nano to
microscopic sized motional devices is still an open problem.
In fact, a mechanical oscillator usually involves many coupled
degrees of freedom while we are interested in the quantum be-
haviour of one of them: the centre of mass motion.

We present a theoretical model for a mesoscopic mechan-
ical oscillator. In our setup, a strongly inhomogeneous static
magnetic field generated by a magnetized sphere is placed
above a cluster, hereafter the resonator, of three orthogonal
superconducting loops (see Fig. 1). Coupling one of the loops
inductively to a superconducting flux qubit we describe a pro-
tocol for cooling one centre of mass translational degree of
freedom for vertical motion close to the ground state. More
specifically, the low mechanical frequency is on resonance
with the dressed frequency of the (driven) qubit. Together
with the high mechanical quality factor, this resonance con-
dition allows for the energy to be dissipated in the qubit en-
vironment. We also assume the resonator and the qubit to be
connected to separate thermal baths with temperatures respec-
tively Tr and Tq, and these can be different, for instance due
to additional motional noise associated with e.g. actively con-
trolling the position of the magnetic sphere.

The total Hamiltonian H is the sum of terms involving
the resonator (Hr), the qubit (Hq) and the interaction (HI):
H = Hr + Hq + HI . The Hamiltonian of the resonator, can be
written in the following form: Hr = KCM + Krot + V , where
KCM is the kinetic energy due to the translational motion of
the center of mass, Krot is the rotational kinetic energy and
V is the effective potential energy as a function of the trans-
lational and rotational degrees of freedom. In the following
m is the mass of the resonator, ~X the vector position of the
various part of the resonator in a co-rotating reference frame
with origin at the center of mass, ~R coordinate of the center of
mass in the laboratory reference frame, ~̃r the vector position
of the various part of the resonator in the laboratory frame,
and ~r = ~̃r − ~R. The origin of the laboratory frame is taken to
be at the center of the magnetic sphere (see Fig. 1).

Because of the rigid body properties, the only allowed re-
lation between ~r(~X, t) and ~X is given by ~r(~X, t) = O(t)~X,
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FIG. 1: Cluster of three insulated superconducting loops levitating
in a magnetic field generated by a magnetized sphere with magneti-
zation vector along x̂1. In the laboratory frame the axes are labeled
{x̂ j}

3
j=1 with angular coordinates α j around each. The reference sys-

tem has the center of the sphere as origin. We depict the magnetic
vector field generated by the spherical magnet and the nearby flux
qubit (which we take to be a 3-junction phase qubit), sitting under
the cluster on a yellow substrate.

where O = e
∑

i αi(t)Ti (with (Ti) jk = εi jk) is a rotation ma-
trix and αi ∈ [−π, π). We can then define the angular ve-
locity vectors as: Ωi = O(t)−1Ȯ(t) = α̇iTi. The motion of
the rigid body is thus completely determined by the six de-
grees of freedom (~R, ~α). The inertia tensor of the resonator
is Ii j =

∫
dVrρ(~X)

(
~X2δi j − ~Xi · ~X j

)
. The kinetic energies are

defined with respect to the reference system in Fig. 1 as:
KCM = 1

2 m
∑

i Ṙ2
i , and Krot = 1

2
∑

i, j Ii jΩiΩ j.
The potential V is just the sum of the flux energy due to

the current flowing in the loops and the gravitational potential
energy: V = 1

2
∑3

a=1 LaI2
a − mgR1, where the index a = 1, 2, 3

labels the normal to the plane of the loop, La is the induc-
tance of loop a and Ia is the current flowing in loop a. By the
symmetry of the resonator the mutual inductances between
the loops is zero. The currents are obtained by stationary flux
condition enforced by the Meissner effect:

∆φa(~R, ~α) + LaIa(~R, ~α) = 0, (1)

where ∆φa(~R, ~α) = φa(~R, ~α) − φa(~R(0), ~α(0)) is the differ-
ence in magnetic flux threading loop a when the system is
in the configuration labeled by (~R, ~α) and when the system
is in its initial configuration (~R(0), ~α(0)). Any infinitesimal
change in flux due to an infinitesimal displacement/rotation
induces a supercurrent whose action is to restore the loop’s
position/orientation. The stronger this restoring force is the
higher the oscillation frequency will be. Denoting ~Σa the area
vector of loop a, then the flux through this loop is: φa(~R, ~α) =∫

Σ
~B ·d~Σa =

∫
∂Σa

~A ·d~r, where ~A(~r; ~M, ~R) =
µ0
4π

1
|~r+~R|3

~M∧ (~r + ~R)
is the vector potential generated by a sphere with homogeneus
magnetization vector ~M calculated at the point ~r + ~R. From
this one can obtain an expression for the potential energy V
as a function of the coordinates ~ζ = {x, y, z, αx, αy, αz}. For

example, at first order in ~ζ,

∆φa =
µ0

4π
( ~Ka · [~r − ~R(0) ∧ ~α] + ~Qa · [ ~M∧ ~α]), (2)

where the vectors ~Ka and ~Qa are calculated from the magnetic
field and the sphere magnetization. This leads to a second
order expansion of the potential energy V = 1

2 Vi jζ
iζ j.

The effect of the gravity in the potential energy causes a
small shift of the potential minimum. By considering the mag-
netization of the sphere to be aligned along the vertical x di-
rection, zero modes appear from the second order expansion
of the potential energy around its minimum which ostensibly
would allow the system to drift away, yet stability is restored
thanks to higher order contributions. The “typical” dimen-
sions of the system are: radius of sphere: Rs = 10µm, res-
onator dimensions: (1, 10, 10) µm with a wire thickness of
0.1 µm, distance between the center of the sphere and the
top of the cluster of loops: 1.2Rs. For NbTi nanowires [25]
and a sphere made of soft ferrite NiZn with residual mag-
netisation µ0|M| = 0.29T [26], the translational frequencies
are (600, 75, 75) KHz. The high frequency motion is a con-
sequence of the high intensity magnetic field allowed by the
choice of the NbTi superconductor, which, in normal condi-
tions, has very high critical magnetic field strength BC ∼ 5T
[25]. In the small oscillations regime, the trapping does not
disappear (yet it become less tight) as the system grows in
size, so that, for example, increasing the system by a factor of
10 decreases these oscillation frequencies by ∼ 10 [27].

To second order perturbation theory (assuming the system’s
initial configuration is not too far from equilibrium [27]) the
vertical direction (with associated variable R1) is decoupled
from the other degrees of freedom and, as shown below, its
frequency is also well separated, relative to line width, to the
frequencies of the other modes hence it can be well resolved
by the qubit coupling. We will consider the quantized vari-
able corresponding to small deviations from the initial posi-

tion along the vertical direction: x̂ =
√

~
2mωr

(â + â†). The
dynamics of this variable is governed by an harmonic Hamil-
tonian whose frequency ωr can be obtained by diagonalizing
the potential V .

There are several potential sources of loss which limit the
motional Q for the resonator. The energy dissipated from
the moving resonator due to its action as a dipole emitter of
radiation is negligible. Similarly, coupling to other phonon
motional modes of the resonator is far off resonant and in-
significant. The dominate modes that would be coupled to are
the flexural, radial, and torsional modes for the horizontally
aligned loop. Approximating the loop as a circle of radius
r` the lowest frequency mode is the torsional mode which
is νtor = 1

√
2π

a
r`

where a is the velocity of sound along the
wire [28]. Using r` = 5µm we find νtor ∼ 200MHz, more
than two orders of magnitude larger than the resonator fre-
quency. Other sources of dissipation are the viscous drag of
flux lines oscillating inside the pinning wells inside the su-
perconducting wires and background gas friction. Schilling
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[7] has calculated the losses to flux line dragging and damp-
ing in a rarefied gaseous atmosphere for the two dimensional
version of our resonator with loss rate γ and for our oscillator
frequency the motional quality factor is Q = ωr/γ ≈ 1011. Ul-
timately, the dominate source of loss is due to inductive cou-
pling to damped eddy currents in the magnetised sphere. In
order to estimate this effect let us consider infinitesimal hor-
izontal loops of radius R′ inside the sphere and placed at a
distance h from the bottom of the sphere. The motional emf
induced in each of such loops is given by |ε | = M`,s(R′, h) dI

dt ,
where M`,s(R′, h) is the mutual inductance between the hor-
izontal loop of the resonator and the horizontal infinitesimal
loop of the sphere. We can compute the power loss by assum-
ing the the currents inside the resonator have instantaneous
effects on the sphere and integrating over the solid sphere s:

P =

∫
s

(M`,s(R′, h) dI
dt )2

ρ2πR′
dR′ dh ≤

∫
s

(M`,s(R′, h)Iωr)2

ρ2πR′
dR′ dh

(3)
where ρ is the resistivity. A more careful calculation includ-
ing retardation effects has a negligible correction [27]. For a
sphere made out of the soft ferrite NiZn with ρ = 107Ωm,
relative magnetic permeability µr = 250 and µ0|M| = 0.29T
[26] the effects due to eddy current loss give a value of Q =

Eωr/P = 109, where the ground state energy E = ~ωr. The-
ory has predicted that one can expect motion Q-factors to be a
large as 1012 in levitated systems [29], and experiments with a
magnetized sphere levitating at frequencies of 100−300Hz in
the presence of superconducting electrodes of a parallel plate
capacitor have observed Q values of up to 106, limited primar-
ily due to loss from flux pin dragging [30]. The prospect for
ultra-large motional Q at moderately high motional frequen-
cies is one of the primary benefits of our scheme.

We now describe how to cool the resonator by coupling it
to a superconducting flux qubit (see the setup in Fig. 1). We
envisage a three stage process. First begin with the resonator
placed on the surface near the qubit and at a temperature above
its Tc so it is a normal metal. Next magnetise the sphere off

line and bring it into the vicinity of the resonator and proceed
to the cool the resonator to below Tc by bringing it into con-
tact with a cold reservoir. Finally, raise the sphere which by
virtue of the Meisner effect will lift the resonator above the
surface. When the sphere-resonator complex is high enough
off the surface, the magnetic field due to the sphere will be
small enough (below the critical field strength) at the location
of the superconducting flux qubit on the surface. In practice
a height of d ∼ 30µm from the qubit to the centre of the res-
onator provides for B < 0.005T� Bc with Bc ∼ 0.01 T for an
Aluminum superconducting flux qubit [31].

By denoting the qubit bare frequency with ωq and by intro-
ducing a driving by a classical field of frequency ωd detuned
from ωq by δ = ωd − ωq and with Rabi frequency Ω, the
qubit Hamiltonian in the rotating frame with frequency ωd is:
Ĥq = − ~δ2 σ̂z + ~Ω

2 σ̂x. The classical interaction Hamiltonian
for the inductive coupling between the horizontal resonator
loop and the loop of the flux qubit is given by: ĤI = M`,qI`Iq,

where I`, Iq are the currents flowing in that loop and in the
qubit and the mutual inductance is: M`,q =

µ0
4π

P
d~s·d~s′
r where

d~s and d~s′ are vectors tangent to two points on the path of the
two loops and r is the distance between the points. Because
we are considering small deviations from the equilibrium ini-
tial position, the mutual inductance between the other loops
or due to the angular motion of the resonator are negligible.
We expand I` to first order in small deviations from the ini-
tial position using Eqs. (1),(2). In the quantized version we
also replace Iq with Iqσ̂z (see for example [34]). Denoting
DI(0) =

∂I`
∂x

∣∣∣∣~R(0)
as the derivative of the current evaluated at the

initial cluster position, the quantized interaction Hamiltonian

is ĤI = ~λ(â+ â†)σ̂z/2, with λ =
√

2
m~ωr

M`,qDI(0)Iq. By con-

sidering a vertical magnetized sphere with magnetization | ~M|,
and approximating the resonator loops to be point-like, one

finds that the coupling roughly behaves as λ ∝ Aq

√
| ~M|

d3 ,where
Aq is the area of the qubit loop and d is the distance between
the qubit and the center of the resonator, which, for this calcu-
lation, we supposed to be much bigger than the other spatial
dimensions involved. The final quantized expression for the
Hamiltonian describing the motion of the cluster in the verti-
cal direction and its interaction with the qubit is (~ = 1):

Ĥ = −
δ

2
σ̂z +

Ω

2
σ̂x + ωrâ†â +

λ

2
(â + â†)σ̂z. (4)

The coupling strength can be adjusted over quite a large range
(λ/2π ∈ [102, 105] Hz) by fixing the distance ([60, 2]µm) be-
tween the center of the resonator and the qubit, taken to be a
circle of radius 5µm, and the resonator.
We choose qubit parameters satisfying

√
Ω2 + δ2 := ωr which

sets the scale for resonant coupling to the resonator. The res-
onator and the qubit are generically coupled to separate ther-
mal baths and interact with each other through the coupling
HI . The joint state of the qubit and resonator is denoted ρ̂ and
evolves under the following master equation

˙̂ρ = −i[Ĥ, ρ̂] + L̂Γ(ρ̂) + L̂γ(ρ̂) (5)

By introducing an energy exchanging, Markovian coupling
between the qubit and a bosonic thermal bath and by defin-
ing the map D[Ô](ρ̂) ≡ (2Ôρ̂O† − {Ô†Ô, ρ̂}), we can de-
scribe the dynamics of the two level system in the limit
ωd � ωr [27] through the following Liouville operator:
L̂Γ(ρ̂) = Γ⊥

2 (Nq + 1)D[σ−] + Γ⊥
2 NqD[σ+] +

Γ||
2 D[σz], where

the dissipation factor Γ⊥ together with an additional dephas-
ing term depending on an excess dephasing factor Γ|| have
been introduced, and where the equilibrium phonon occupa-

tion number is Nq = (e
~ωq

kBTq −1)−1 where Tq is the qubit phonon
bath temperature. By tracing out the qubit we obtain an effec-
tive equation of motion for the resonator. From this we will
see that under certain cases we can obtain a cooling process
bringing the cluster towards its motional ground state.

Under the temperature independent assumptions (λ �
Γ⊥, ωr), and assuming the resonators initial state is a pure co-



4

FIG. 2: Cooling performance. Final resonator phonon occupation
number n f as a function of the initial occupation number Nth for
cooling via dissipation. The phonon number Nth corresponds to
the fixed temperature Tr of the resonator bath. The dot-dashed
lines represent the low temperature limit nLD. When n f is below
the identity dotted line some cooling is achieved. The system pa-
rameters are (ωr, λ,Γ⊥)/2π = (6 × 105, 1.6 × 103, 105)Hz and (Ω,
δ,Tq)=(0.5 ωr, −

√
ω2

r −Ω2,10mK). The red curve represents a case
where the bath is at higher temperature but the decay rate is smaller:
(ωr, λ,Γ⊥)/2π = (6 × 105, 1.6 × 103, 104)Hz and (Ω, δ,Tq)=(0.5 ωr,
−

√
ω2

r −Ω2,100 mK). The excess dephasing has been set to satisfy
Γ|| = Γ⊥. Inset: resonator-qubit coupling constant λ as a function of
the distance d between the qubit and the center of the cluster of loops.
For large distances the coupling scale as d−3 following its linear de-
pendency on the mutual inductance between the horizontal resonator
loop and the qubit loop.

herent state |α〉, the final phonon occupation number for the
resonator is solved for in Ref. [35]:

n f = Nth

(
ζ + (1 − ζ)/(1 + ζeI1/(Nthζη

2))
)
. (6)

Here the “renomalized” cooling rate is Γ(α) = iλ(~S z
1/α −

~S z
−1/α

∗), with ζ = Γc(0)/γ, I1 = 2
∫ ∞

0 dα αΓ̃c(α/η), Γ̃c =

Γc(α)/Γc(0), η = λ/ωr and Nth = (e
~ωr

kBTr − 1)−1 where Tr is the
resonator phonon bath temperature. The qubit polarization
Fourier components, ~S z

1 and ~S z
−1 are given by the solutions to

Bloch equations (for the solution see [27]). In the low tem-
perature limit, (λ

√
Nth + 1/2 � Γ⊥, ωr), which is equivalent

to the Lamb-Dicke regime, one can obtain an effective master
equation for the resonator after tracing out the qubit (see Ref.
[35] and references therein). This gives a new effective res-
onator damping rate Γ = ΓC + γ with ΓC = S (ωr) − S (−ωr)
where S (ω) denotes the qubit fluctuation spectrum S (ω) =
λ2

2 <
∫ ∞

0 eiωτ dτ
{
〈σ̂z(τ)σ̂z(0)〉0 − 〈σ̂z〉

2
0

}
and 〈·〉0 denotes the

steady state expectation. The resulting steady state occupa-
tion of the resonator is

nLD = γNth/ΓC + N0 , (7)

where N0 = S (−ωr)/ΓC . Figure 2 shows the final expected
cooled motional Fock number n f in the on resonant case and
for two different qubit bath temperatures. For comparison, we

also plot the dashed line labeled as nLD obtained from the low
temperature theory extrapolated to high temperature (as given
by Eq. (7)). One can see for a large temperature range the
expression nLD is valid, however, above a certain bath temper-
ature cooling is no longer possible. By coupling the resonator
to the qubit, the system shows a significant enhancement in
the cooling rate relative to letting it cool by dissipative loss
alone. The cooling rate goes from γ/2π = 6 × 10−4 Hz to
(γ + ΓC)/2π ∼ 0.5 Hz when in contact with a reservoir with
temperature Tq = 10−2 K and to (γ + ΓC)/2π ∼ 1 Hz when
in contact with a reservoir at Tq = 10−1 K (with the other pa-
rameters fixed as described in the caption of figure 2). The net
result is that, even if the resonator is connected to a very hot
thermal bath (Nth ∼ 105), one can cool the system to a final
average phonon number n f ∼ 1. As a final note, performances
would improve with increased resonator frequency. This can
be obtained by replacing the magnetized sphere with a mag-
netic tip [37] with much larger magnetic field gradients.

We have presented a mechanical oscillating system having
very low dissipation utilizing superconducting material levi-
tated in a vacuum via the Meissner effect. By inductive cou-
pling to a flux qubit we showed how to cool down the motion
of the system both in high and low temperature environments
using engineered dissipation of the qubit. The overall per-
formance improves with stronger or higher gradient magnetic
fields, which could be achieved by replacing the magnetized
sphere with other geometric magnetized objects. It is also pos-
sible to use the qubit to provide an indirect coupling between
spatially separated levitated resonators. This would allow for
the generation of spatially extended (several microns), macro-
scopic motional multimode superposition states that could be
used for high precision measurements of force gradients eg.
gravity. For two oscillators coupled by one qubit one can use
the mechanism in Ref. [38], to generate two-mode motional
Yurke-Stoler cat states, while for a chain of oscillators and in-
terspaced coupling qubits it is possible [39] to generate very
large spatially extended entangled motional states.
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