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Abstract 

We present a unified formalism of Andreev reflection of a partial polarized current at a 

ferromagnet/superconductor interface instead of assuming a linear combination of unpolarized 

and polarized currents. The Andreev reflection is limited by the states of minority spins and the 

extra majority spins become evanescent wave.  We further study the effects of spin polarization, 

inelastic scattering, and interfacial scattering on the Andreev reflection, normal reflection, and 

transmitted probabilities in equilibrium as well as under a bias.  Our model, which reduces to 

those of BTK, Mazin, and Dynes models in three limiting cases, provides a significantly better 

description of the experimental results. 
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The spin polarization P of a ferromagnet (FM), defined as the imbalance of the 

normalized density of states (DOS) of the majority and the minority spins at the Fermi level, 

plays a pivotal role in many magnetoelectronic phenomena, including giant magnetoresistance, 

tunneling magnetoresistance (TMR), and spin torque effects.  Yet, the value of P is often the 

least known, in part because only a few methods can measure P.  Spin-polarized photoemission 

studies, highly susceptible to surface states and contamination, have reported P values of 0% [1] 

and 100% [2] for Ni, both are far from the actual value of P ≈ 40%.  Spin dependent tunneling, 

including F1/I/F2 and F/I/S junctions, depends stringently on the quality of the insulator (I) 

barrier.  The TMR value of nominally the same F1/I/F2 junctions could vary by orders of 

magnitude [3-5].   

Andreev reflection (AR) has been extensively used to measure the P values of many FMs 

[6-25].  At a normal metal/superconductor (NM/S) interface within the superconducting gap, a 

normal current must be converted into a supercurrent, where an electron is accompanied by 

another of the opposite spin. This is equivalent to a hole reflected back into the normal metal, the 

essential AR process, thus doubling the conductance within the gap.  In contrast, at a half-

metal/superconductor (HM/S) interface, the said conductance is zero due to the absence of 

electrons with the opposite spin.  With quantitative analyses, one can determine P of FMs as well 

as the superconducting gaps using AR spectroscopy [26].  

The classic Blonder-Tinkham-Klapwijk (BTK) model [27] and the Mazin model [28, 29] 

quantitatively describe AR of a fully unpolarized current at a NM/S interface and a fully 

polarized current at a HM/S interface respectively.  Most FMs are partially polarized with P 

between 0 and 1.  Previously, the only available option is the linear model where one assumes a 

linear combination of a fully unpolarized current (the BTK model) and a fully polarized current 
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(the Mazin model) with the spin polarization Pl as the coefficient, ll IPPII +−= )1( . This linear 

relation may be valid for transparent interfaces, but questionable at non-transparent interfaces. 

Inelastic scattering in superconductors (N/I/S) and (S/I/S) junctions has been successfully 

incorporated using an imaginary component to the energy within the Dynes model [30] and has 

also been included in the BTK model for an unpolarized current [31] but not for a fully polarized 

current. 

In this work, we provide a unified description of the AR at F/S interfaces valid for 

arbitrary polarization that encompasses the BTK and the Mazin models without assuming a 

linear combination.  In our model, AR is limited by the minority spins while the redundant spin 

of the majority becomes evanescent. The spin polarization is naturally included and, most 

importantly, the effects of spin polarization, inelastic and interfacial scattering can now be 

studied for all the probabilities involved in the AR process.  Our unified AR model reduces to the 

BTK, the Mazin and the Dynes models in the three limiting cases. We show that the value of P is 

substantially different from Pl of the linear model except when the interface is transparent. We 

demonstrate that our general model provides a better description of the experimental data, 

especially at low bias.   

We consider a partially-polarized current at an F/S interface in equilibrium. The incident 

and transmitted plane waves are xiq
inci e

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
1

ψ , )(2 Emq ±=± μ , 

xikxik
trans e

u
v

de
v
u

c
−+ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ~

~
~
~

ψ , where u~  and v~  are the BCS complex coherence factors, 

2/))/()(1(~1~ 2222 Γ+Δ−Γ++=−= iEiEvu , in which Γ is the inelastic scattering factor, E is the 

quasi-particle excitation energy above the ground state (E ≥ 0). The wave vectors are defined as 
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)(2 Emk ±=± μ and )(2 22 Δ−±=± Emq μ . The effect of mismatch of Fermi vectors 

can be attributed to the Z factor [27]. Here since EEF >>≈μ  and Δ>>FE , for simplicity we 

take Fkqk ≈≈ ±± . The reflected wave function including normal reflection, AR, and evanescent 

wave is xiqxqi
refl ebea
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0 )(αψ , where α is a dimensionless real number.  In analogy to 

total internal reflection, α represents the portion of evanescent wave. When α ≠ 0, the boundary 

conditions generically remain the same because the evanescent wave does not contribute to the 

current. These boundary conditions demand continuity of the wave function and compel its 

derivative to satisfy the potential function Hδ(0) at the interface.   

The calculated coefficients a, b, c and d are listed in Table I (1st row) and depend on α, E, 

Z, and Γ.  
Fk

mHZ 2≡  represents the interfacial scattering.  The probabilities of Andreev A = aa* 

and normal reflections B = bb* can then be evaluated straightforwardly.  Similarly, the 

transmitted probability without-branch-crossing C and with-branch-crossing D are C = 

*)~~*~~(* vvuucc −  and D = *)~~*~~(* vvuudd − , where *~~*~~ vvuu −  is the group velocity.  The probability 

is manifestly conserved with A + B + C + D = 1 for any real α, consistent with the boundary 

conditions.  

When α = 0, the coefficients are exactly those of the BTK model [27] for an unpolarized 

current, as shown in Table I (2nd row). One notes that, by introducing the generalized complex 

BCS coherence factors u~ , v~  and the group velocity *~~*~~ vvuu − , we have already included the 

effect of inelastic scattering.  When α = ∞, a is zero and b, c, d are reduced for a fully polarized 

current listed in Table I (3rd row). Previously, b, c and d for a polarized current have not been 
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calculated and only the probability B = bb* has been given by the Mazin model. A simple 

calculation of the normal refection from Table I shows that B is exactly the expected result for a 

fully polarized current [28]. 

In the BTK model, when Z = ∞, the Andreev spectrum becomes the tunneling spectrum, 

the DOS of the superconductor.  In our model with the inelastic effect and spin polarization 

included, when Z >> 1 and α = 0 for unpolarized current, the conductance reduces to 

22)(/)( Δ−Γ+Γ+∝ iEiE , precisely the Dynes result for tunneling with inelastic scattering 

effects [30].  Thus, our unified model in three limiting cases reproduces the BTK model, the 

Mazin model and the Dynes model. In addition to the inelastic effects, our results also include 

spin polarized tunneling effect represented by α. One can show that except in the purely 

tunneling regime (Z = ∞), the spin polarization can substantially affect the tunneling spectrum. 

Next, we discuss the effect of Z, α, and Γ on the probabilities of A, B, C and D when the 

interface is in equilibrium.  As shown in Fig. 1, the three vertical columns are respectively for the 

effect of Z (α = 0, Γ = 0), α (Z = 0, Γ = 0), and Γ (α = 0, Z = 0).  The first column is just the 

BTK results, whereas the other two columns are the new results.  In the first column, as Z 

increases, A is suppressed within the gap resulting a peak at E = D (Fig. 1a), causing a stronger 

normal reflection in B (Fig. 1b), with no quasi-particles inside the gap so the transmission 

probabilities C (Fig. 1c) and D (Fig. 1d) within the gap are zero.  Outside the gap, the transmitted 

probability without branch crossing C decreases for increasing Z, because electrons are reflected 

back by the barrier.  

The effect of increasing α for Γ = 0 and Z = 0 is shown in the second column of Fig. 1. 

The reason for using α = 0.0, 1.16, 2.0, 3.46, and 100 will be discussed later. As α increases, A 
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suppresses (Fig. 1e) and B increases (Fig. 1f). At α = 0, we have A = 1 and B = 0, whereas at α = 

100, A ≈ 0 and B ≈ 1. This means that all the electrons are reflected back when α is large.  Inside 

the gap, both A and B remain unchanged. Furthermore, α has no effect (α = 0 or α  = 100) on C 

(Fig. 1g), strikingly different from the effect of Z (Fig. 1c).  No quasi-particles exist inside gap, 

thus C = D = 0 for E < Δ. When E > Δ, most electrons go into the superconductor on the same 

side of the Fermi surface. However, as α increases, the probability of branch crossing D 

increases outside the gap, as shown in Fig. 1h.  

With inelastic scattering, electrons can be scattered into the superconductor as quasi-

particles, thus there are transmitted probabilities C and D even for E < Δ (Fig. 1k).  The effect of 

Z, α, and G on probabilities is very different. The G factor affects probabilities mostly at the gap 

(Fig. 1i), while the effect of Z is mostly at E = 0 (Fig. 1a and 1b) and α uniformly affects A and B 

within the gap (Fig. 1e and 1f). One notes that both Z and G but not α have strong effects on C 

and D. 

So far we have discussed the effects of spin polarization, inelastic scattering and 

interfacial scattering in equilibrium. An actual AR experiment is driven to nonequilibrium by a 

bias voltage.  Assuming ballistic transport, the normalized conductance spectrum of an interface 

with a bias voltage V is, 
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where 1/RNN ≡ (1+Z2)/(2N(0)e2vFAS). Coefficients A(E) and B(E) are the probabilities listed in 

Table I.  
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Previously, since only the coefficients at the limits of purely polarized and unpolarized 

current have been calculated, the conductance for a partial polarized current has been assumed as 

a linear combination of the these two extreme cases with Pl as the coefficient, 
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where Au, Bu, Ap = 0, and Bp are respectively Andreev and normal reflection for purely 

unpolarized [27] and polarized current [28].  

Unique to our new unified model, P is related to α, although not α itself for α is without 

limit.  In AR with an ideal interface (Z = 0 and Γ = 0), only the number of minority spins limits 

the conductance within the gap. The measured spin polarization should be exactly 1 - A, the total 

probability without AR for an ideal interface.  However, while the AR probability A can be 

significantly affected by Z and Γ the intrinsic spin polarization of the material in question must 

remain independent of Z and Γ.  Therefore, the determined spin polarization by the AR method 

is P = 1 - A(Z = Γ = 0). From Table I, P = 1 - A(Z=Γ=0) = α2/(α2 + 4), a key result of our model 

that defines the spin polarization P in terms of α alone.  When α = 0, P = 0 while P = 1 for α→∞. 

Actually, for α = 100, P = 0.9996 is already close to full polarization.  

Next, we discuss the effects of α, Γ and Z on AR spectra of both models at 0 K. The 

normalized conductance curves for various a’s and Pl’s are illustrated in Fig. 2. Conductance 

spectra with α = 0.0, 1.16, 2, 3.46, 100 of the present model of eq. (1) shown by the solid curves 

are compared with those with Pl = 0.0, 0.25, 0.5, 0.75, 1.0 of the linear model of eq. (2) shown 

by the dashed curves.  For either Pl = 0 and Pl = 1, the two models are exactly the same since 

there is only one term in the linear model. Also, if there is no interfacial scattering (Z = 0), the 
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two models have the same results.  However, when Z ≠ 0, even a small Z = 0.25 causes 

noticeable difference between the two models as shown in Fig. 2c and 2d.  The difference occurs 

mostly within the gap.  When there are both inelastic and interfacial scattering with Γ = 0.1, Z = 

0.25, the spectra are similar as those shown in Fig. 2(c) except that they are smoothened (Fig. 2d). 

Previously, the AR spectroscopy results analyzed using the linear model generally shows 

the Pl ∼ Z behavior, which could not be accounted for by any model [32]. In our unified model, P 

= α2/(α2 + 4), which is independent of Z and G. Our analysis can therefore be used track the 

genuine physical effect of Z and G on P.  Since eq. (1) and eq. (2) describe the same conductance 

at a N/S interface, we can equate the two.  For Z = 0 and G = 0, one finds that Pl is simply α2/(α2 

+ 4), the same as in our model. But if Z ≠ 0, Pl depends on other parameters such as Z, Γ, T. 

Since both models give the same conductance at V = Δ/e, we calculate the dependence of Pl on Z 

for three Pl values (0.5, 0.75, 0.95 at Z = 0) with Γ = 0 for T = 1.5K and 4.2K, as illustrated in 

Fig. 3.  As Z increases, Pl inevitably decreases just as experimentally observed. The detailed 

dependence on Z is more involved, but broadly consistent with Pl ∼ Z.  Needless to say, this 

dependence of Pl on Z and G is entirely spurious for a spin-inert interface; in contrast, our P does 

not change at all (Fig. 3). Importantly, at Z = 0, both models give the same spin polarization. 

Previously, we have extracted intrinsic spin polarization by extrapolating to Z = 0 [14, 18, 19, 22, 

24] and, in retrospect, our unified model validates this approach. 

In the following, we apply our unified model to some experimental data and compare the 

results with that from the linear model. The Andreev spectra are obtained from Nb tips in contact 

with amorphous Co40Fe40B20 thin films made by magnetron sputtering.  Over 30 Andreev spectra 

were obtained with various contact resistances (RC) from 143 Ω to 10 Ω. Two of the 
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representative spectra with RC = 128 Ω and 11 Ω are shown in Fig. 4 as open circles.  The solid 

and the dashed lines are the best fit using our model and the linear model respectively.  Both 

models give a reasonable fit to the data with the P values obtained from our model (solid dots) 

and the linear model (open squares), shown in Fig. 4(e).  The decrease of P is due to the spin-flip 

scattering of the interface thus our model can be used to determine the intrinsic P ~ Z relation. 

We have found our unified model provides a more accurate fit to the superconducting gap Δ.  

In summary, we present a unified, and most general to date, model of Andreev reflection 

at an F/S interface of a spin-polarized current quantum mechanically that includes effects due to 

spin polarization, inelastic scattering, and interfacial scattering.  The spin polarization is 

naturally included instead of assuming a linear combination of unpolarized and polarized 

currents as in previous models.  Our formalism reduces to the well-known BTK model, the 

Mazin model, and the Dynes model in three limiting cases.  The new formalism can address the 

effects of spin polarization, inelastic and interfacial scattering on all the probabilities involved in 

Andreev reflection process and also provides significantly better description of the experimental 

data with more reliable parameters extracted.  We also show that the polarization results 

previously obtained from analyses using the linear model are still valid but only in the limit of 

negligible interfacial scattering. 
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Table I  Probabilities of of an F/S interface: *aaA = gives the probability of Andreev 

reflection, *bbB =  of ordinary reflection, *)~~*~~(* vvuuccC −=  of transmission without branch 

crossing, and *)~~*~~(* vvuuddD −=  of transmission with branch crossing. 
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Fig. 1 Effect of polarization a, interfacial scattering Z, and inelastic scattering G on 

transmission and reflection probabilities A, B, C and D for (a-d) Z = 0, 0.25, 0.5, 1, 3, (e-h) α = 0, 

1.16, 2, 3.46, 100, and (i-l) Γ = 0, 0.1, 0.2, 0.5 1. 
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Fig. 2 Effect of spin polarization on conductance spectra from this model (solid lines) and 

the linear model (dashed lines) for various α = 0, 1.16, 2, 3.46, 100 and Pl = 0, 0.25, 0.5, 0.75, 1 

with (a) Z = Γ = 0, (b) Z = 0, Γ = 0.1, (c) Z = 0.25, Γ = 0, and (d) Z = 0.25, Γ = 0.1. 
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Fig. 3 Calculated spin polarization (Pl = 0.5, 0.75, and 0.95 at Z = 0) of the linear 

combination model as a function of Z (Γ = 0 and V = Δ/e) at 1.5 K (dot line) and 4.2 K (dashed 

lines). Solid lines are spin polarization from this model. 
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Fig. 4 Two Andreev spectra (open circles) of Nb/Co40Fe40B20 contacts with RC = 128 Ω 

(a) and 11 Ω (b) analyzed by this model (solid) and the linear model (dashed) with T = 4.25 K, Δ 

= 1.42 meV fixed as experimental values and Γ = 0, (e) determined spin polarization value as a 

function of Z.  Additional resistance rE is addressed in ref. 19. 


