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We study the interplay between disorder and interaction in one-dimensional topological super-
conductors which carry localized Majorana zero-energy states. Using Abelian bosonization and
the perturbative renormalization group (RG) approach, we obtain the RG-flow and the associated
scaling dimensions of the parameters and identify the critical points of the low-energy theory. We
predict a quantum phase transition from a topological superconducting phase to a non-topological
localized phase, and obtain the phase boundary between these two phases as a function of the
electron-electron interaction and the disorder strength in the nanowire. Based on an instanton
analysis which incorporates the effect of disorder, we also identify a large regime of stability of the
Majorana-carrying topological phase in the parameter space of the model.
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Introduction. The search for topological phases of mat-
ter has become an active and exciting pursuit in con-
densed matter physics [1]. Among the many impor-
tant examples of such phases are topological supercon-
ductors (SC) supporting zero-energy Majorana bound
states (MBS) [2–11]. A particularly promising realiza-
tion of topological superconductivity is one-dimensional
(1D) semiconductor/SC heterostructures [10, 11]. In ad-
dition to being one of the simplest examples of fraction-
alization, zero-energy MBS quasiparticles have Ising-like
non-Abelian braiding properties [12–15] and can be used
for topological quantum computation [16].

The distinct feature of topological SCs is the ground-
state degeneracy due to the fermion parity encoded in
the exponentially localized zero-energy MBS [3, 17]. In a
finite-length 1D wire, this degeneracy is approximate and
there is an exponentially small energy splitting e−L/ξ due
to a finite overlap of MBS. Here L and ξ are the length of
the wire and superconducting coherence length, respec-
tively. The presence of impurities in 1D p-wave SCs with
broken time-reversal and spin SU(2) symmetry (class
D) [18] adversely affects the stability of the topological
phase and drives a transition to a non-topological insu-
lator phase [19–27]. The aforementioned QPT transition
between topological and non-topological (localized) ther-
mal insulator phases is accompanied by the change of the
ground-state degeneracy splitting from exponential to al-
gebraic in L [22]. In other words, increasing the disorder
strength leads to a topological quantum phase transition
(QPT) from the Majorana-carrying topological SC phase
with quantum degeneracy to a trivial phase with no end-
MBS in the wire. The effect of electron-electron inter-
actions in the disordered SC wires have not been taken
account before. The latter may have important implica-
tions for the topological phase, and there may be QPTs
associated with the tuning of the interaction strength.
Indeed, it is well known that the low-energy properties

of 1D conductors are strongly affected by both electron-
electron interactions and disorder [28]. Clarification of
their combined effect is crucial for our complete under-
standing of the topological phase diagram of the system
and ultimately for the experimental realization of Majo-
rana quantum wires in the laboratory [29], where both
disorder and interactions would be inevitably present.

In this Letter, we investigate an important question
concerning the effect of both disorder and interaction on
the stability of the topological phase and provide a theo-
retical framework that generalizes previous important re-
sults on disordered non-interacting systems [19–27] and
on interacting clean Majorana wires [30–33]. We consider
a generic 1D p-wave SC and include the effects of both
quenched disorder and interaction using the bosoniza-
tion and replica method [34]. We derive a set of coupled
renormalization-group (RG) equations for the parame-
ters of the model, obtaining in the process the quan-
tum phase diagram of the system. Using these results
in combination with an instanton analysis allows us to
analyze the topological stability of MBS under the influ-
ence of both interaction and disorder. In general, disor-
der and repulsive interactions reinforce their detrimental
effects on the topological SC phase and tend to elimi-
nate the exponentially-split ground state MBS degener-
acy associated with different fermion parity [35]. How-
ever, for a sufficiently strong initial induced pairing ∆,
we predict a stable topological phase at low tempera-
tures, even in the presence of disorder and interaction.
Our results are relevant to recent experiments on semi-
conductor nanowires with strong spin-orbit and Zeeman
interactions, proximity-coupled to a s-wave bulk SC [29],
whose low-energy Hamiltonian was shown to reduce to
an effective 1D spinless p-wave SC [10, 11], and shed
light on the question of the stability of MBS in realistic
situations.

Theoretical model. We start with a model for p-wave
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spinless fermions in a clean, single channel conductor of
length L with open boundary conditions. In that case,
the Hamiltonian for the 1D SC wire in the continuum is

H
(1)
0 =

∫ L

0

dx ψ†
(
− ∂2

x

2m
− µ

)
ψ −∆ψ

(
i∂x
kF

)
ψ + H.c.,

where ~ = 1, ψ (x) is the fermionic annihilation field op-
erator, m is the effective mass, µ is the chemical potential
and ∆ is the p-wave pairing interaction. In absence of

interactions and disorder, the Hamiltonian H
(1)
0 can be

straightforwardly diagonalized by the means of a stan-
dard Bogoliubov transformation. However, introducing
interactions considerably complicates the theoretical de-
scription and a different approach is needed. We there-
fore start from the limit ∆ = 0, and linearize the spec-
trum ξk = k2/2m−µ around the Fermi points ±kF . This
allows to express the fermion field ψ (x) as a sum of right-
and left-movers ψ (x) = eikF xψR (x) + e−ikF xψL (x), and
to introduce the standard Abelian bosonization proce-
dure of Fermi fields ψr = 1√

2πa
Ure
−i(rφ−θ), where r =

{R (+) , L (−)}, and a ∼ k−1
F is the short-distance cutoff

of the continuum theory, The bosonic fields φ (x) , θ (x)
are conjugate canonical variables obeying the commuta-
tion relation [φ (x) , θ (y)] = iπsign (y − x) /2, and Ur are
the standard Klein factors [28]. Physically, φ (x) repre-
sents slowly-varying fluctuations in the electronic density
ρ (x) ' ρ0 − ∂xφ (x) /π, and θ (x) is related to the SC
order parameter through the relation −iψ (x) ∂xψ (x) ∝
ψR (x)ψL (x) ∝ ei2θ(x), where we have neglected less rel-
evant higher-order terms in ∂xθ (x). A short-range in-

teraction H
(2)
0 = g

∫
dx ψ†R (x)ψR (x)ψ†L (x)ψL (x) ac-

quires a simple form in terms of the bosonic fields, and

the Hamiltonian H0 = H
(1)
0 +H

(2)
0 is therefore given by

H0=

∫
dx

[
vK

2π
(∂xθ)

2
+

v

2πK
(∂xφ)

2
+

2∆

πa
sin (2θ)

]
. (1)

For ∆ = 0, Eq. (1) reduces to the Luttinger liquid (LL)
model [28], which describes gapless plasmon excitations
in the wire propagating with velocity v ' vF , and is
parametrized by the the dimensionless Luttinger param-

eter K =
√

1−g/πvF
1+g/πvF

representing repulsive (attractive)

interactions for K < 1(K > 1). The hypothesis of a

short-ranged interaction in H
(2)
0 requires the presence of

strong screening in the nanowire. In a realistic situation,
such as the case of Ref. [29], we assume that this screen-
ing is provided by electrons in the semiconductor and sur-
rounding SC. We also assume henceforth that the filling
is incommensurate with the lattice and the length of the
wire L � Lc ≡ [4kF − 2π/a]−1, in which case the umk-
lapp scattering term cos (2φ− 4kFx) becomes strongly
oscillating at lengthscales larger than Lc and averages
out to zero [30].

As follows from the analysis of Eq. (1) made below, the
SC pairing ∆ around K ≈ 1 is relevant [see Eq. (7)], and
flows to strong coupling. Thus, at large enough ∆, the
field θ (x) is pinned to the minima of sin 2θ and the SC
state breaks U(1) symmetry down to Z2. In the infinite
system L→∞, the latter corresponds to two degenerate
minima at θ (x) = −π/4, 3π/4 which are related to each
other by the global Z2 transformation θ → θ + π [35].
Such a transformation is implemented by the fermion

parity operator P = (−1)
NF = exp

[
−i
∫ L

0
∂xφ (x) dx

]
with NF the total fermion number operator. The de-
generate ground states characterized by different fermion
parity read |even/odd〉 = (|−π/4〉 ± |3π/4〉) /

√
2. In the

case of a large but finite L, the two degenerate ground-
states are split in energy due to quantum tunneling be-
tween the two minima θ (x) = −π/4, 3π/4. The split-
ting energy can be calculated using instanton analysis
δE = Afe

−Sinst , where Sinst is the action of the Euclidean
instanton θ0 (x, τ) (where τ is the imaginary-time), obey-
ing the boundary conditions θ0 (x,−∞) = −π/4 and
θ0 (x,∞) = 3π/4, and Af is a prefactor due to quan-
tum fluctuations around those minima [36]. The instan-
ton configuration minimizing Sinst is spatially uniform
rendering effectively a 0 + 1 dimensional problem, whose
corresponding action is [35]

Sinst =
4
√
K

π

L

ξ
, (2)

with ξ = v/∆ the SC coherence length. The instanton-
analysis therefore predicts an energy splitting scaling

as δE ∝ exp(− 4
√
K
π

L
ξ ), in agreement with the non-

interacting Majorana chain [3].
We now introduce quenched disorder into model (1).

We consider the case of a short-range Gaussian disor-
der potential V (x) that couples to the fermionic den-
sity, Hdis = −

∫
dx V (x) ρ (x) and characterized by

〈V (x)V (y)〉 = Dbδ (x− y) . In bosonized language, the
disordered Hamiltonian is [28]

Hdis =

∫
dx

[
−η (x)

∂xφ (x)

2π
+ ξ (x)

e−i2φ

2πa
+ H.c.

]
,(3)

where we have defined the disordered potentials η (x) ≡
1
N

∑
q∼0 e

iqxV (q) and ξ (x) ≡ 1
N

∑
q∼0 e

iqxV (q − 2kF ).
The forward scattering term −η (x) ∂xφ (x) /2π can be
eliminated by the means of a gauge transformation
φ (x) → φ (x) − K

v

∫ x
dy η (y), reflecting the fact that

forward scattering does not affect the thermodynamic
properties of the system [37]. We next implement the
replica method, that consists in introducing the set of
independent “replicas” of the system {φ (x) , θ (x)} →
{φi (x) , θi (x)}, with i = 1, 2, . . . , n and commutation re-
lations [φl (x) , θm (y)] = iπ2 sign (y − x) δlm, allowing a
simpler integration over different disorder configurations
[28, 34]. At the end of the calculation, we take a limit



3

n→ 0. The integration of the Gaussian field V (x) results
in the replicated action of the 1D system

S =

n∑
j=1

∫
dτ

[∫
dx

∂xφj
iπ

θ̇j +H0,j (τ)

]
−

n∑
i,j=1

Db

(2πa)
2

×
∫
dxdτdτ ′ cos 2 [φi (x, τ)− φj (x, τ ′)] , (4)

where the Hamiltonian H0,j is defined in Eq. (1). In
the absence of SC pairing, this model was studied by
Giamarchi and Schulz in the context of the localiza-
tion transition, predicted to occur at the critical value
Kc = 3/2 for spinless fermions, in the limit of weak dis-
order [37]. For K < Kc, disorder flows to strong coupling
and the groundstate corresponds to a pinned charge-
density-wave (PCDW), characterized by a localization

length ξloc ∝ D
1/(3−2K)
b . Above Kc, the LL phase re-

mains stable, describing a “delocalized” electronic fluid.
In the presence of SC pairing, the LL fixed-point is never
stable, as we show below.

RG analysis. The critical properties of model (4) can
be studied in the framework of perturbative RG around
the LL fixed-point. Following standard derivations [28,
38], we expand the partition function corresponding to
action S at first-order in the small parameter Db, and up
to second order in ∆. We implement the RG procedure
in real-space, which leaves invariant the LL fixed-point
Hamiltonian, and obtain the following system of RG-flow
equations

dK (`)

d`
= y2

∆ (`)−K2 (`) yb (`) , (5)

dv (`)

d`
= −v (`)K (`) yb (`) , (6)

dy∆ (`)

d`
=
[
2−K−1 (`)

]
y∆ (`) , (7)

dyb (`)

d`
= [3− 2K (`)] yb (`) , (8)

where we have introduced the dimensionless variables
y∆ = 2∆a/v and yb = Dba/4πv

2. Physically Eq. (5)
describes the renormalization of interactions in the wire
[parametrized by K (`)] induced by superconductivity
and disorder. While y∆ (`) couples to field θ (x), favoring
a SC ground state with broken Z2-symmetry, the param-
eter yb (`) couples to the dual field φ (x) and tries to pin
the density to the disorder potential, thus opposing a
SC ground state. These competing effects are reflected
in the different signs of the prefactors in Eq. (5): y∆ (`)
renormalizes K (`) to larger values, inducing attractive
interactions in the wire, while yb (`) drives K (`)→ 0 en-
hancing the effect of repulsive interactions. In the limit
{y∆ (`) , yb (`)} → 0 the properties of the system are de-
termined by the value of K (`), i.e., the coupling y∆ (`)
becomes relevant (in the RG sense) for K (`) > 1/2,
whereas yb (`) is relevant for K (`) < 3/2 [37, 38]. From
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FIG. 1: (a) Parametric dependence of yb (`) vs y∆ (`), as ob-
tained from the numerical solution of the RG-flow Eqs. (5)-
(8), for fixed initial parameter K0 = 0.65 (log-log scale). The
thick dashed curve is the critical line, separating the topolog-
ical SC phase (shaded area) from the non-topological disor-
dered phase, and the thin dotted line is our analytical estimate
yb ∼ yν∆, valid in the limit {yb (`) , y∆ (`)} → 0. (b) Phase di-
agram in y∆0, yb0 space obtained for ys0 = 0 and different
values of K0. The curves correspond to the critical lines yb0
vs y∆0, satisfying the condition y∆ (`∗) = yb (`∗) = 1. The
area below each curve represents the regime for which topo-
logical SC is expected to dominate over disorder.

this RG-analysis we extract two important conclusions:
1) the non-interacting limit K = 1 is an unstable point in
parameter-space, and 2) repulsive interaction and disor-
der reinforce each other’s detrimental effects on the topo-
logical SC. Note that within the experimentally interest-
ing regime 1/2 < K (`) < 3/2 both y∆ (`) and yb (`)
are competing perturbations flowing simultaneously to
strong coupling. Moreover, in the non-interacting case
K = 1, y∆ (`) and yb (`) have the same scaling dimen-
sion. In order to maintain the internal consistency of our
perturbative approach, the RG flow has to be stopped
at a value `∗ for which one of the couplings reaches the
strong-coupling regime, i.e., max [y∆ (`∗) , yb (`∗)] = 1.
Although strictly speaking our approach is not appli-
cable in the strong-coupling regime, the fact that θ (x)
and φ (x) are dual fields that cannot order simultane-
ously allows us to reasonably conjecture that there are
no intermediate fixed-points in the RG flow, and there-
fore to classify the nature of the ground state according
to the coupling that first reaches the above condition [38].
When the two competing couplings reach the strong cou-
pling regime simultaneously [i.e., yb (`∗) = y∆ (`∗) = 1],
the system does not order and this condition defines a
critical line of QPTs that separates the topological SC
phase with broken Z2 symmetry from the PCDW insu-
lating phase (cf. thick dashed line in Fig. 1(a)).

From the lowest-order RG equations one obtains the
approximate solutions yb (`) = yb0e

(3−2K)`, y∆ (`) =

y∆0e
(2−K−1)`, which together produce the relative scal-

ing yb ∼ yν∆ with ν = (3− 2K) /
(
2−K−1

)
. Physically,

this means that interactions (encoded in ν) determine
the scaling of disorder strength relative to the SC order
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parameter: for K > 1 (attractive interactions) disorder
grows slower than SC, while the inverse occurs for K < 1
(repulsive interactions). In Fig. 1(a) we show the para-
metric dependence of yb (`) as a function of y∆ (`), for
the initial condition K0 = 0.65. The continuous lines
correspond to the numerical solution of Eqs. (5)-(8), and
the dotted line is our analytical result yb ∼ yν∆, valid in
the limit {yb (`) , y∆ (`)} → 0. At the phase boundary
(thick dashed line), this result implies the approximate
relation yb0 ∼ yν∆0 for the initial values, which together
with the relation: Db = 2πvF /τe (where τe is elastic
scattering time), produces 1/τeEF ∼ (∆/EF )ν . Inter-
estingly, for K = 1 we find that the critical condition for
the topological-non-topological transition is 1/τe ∼ ∆,
which exactly coincides with the results obtained in the
non-interacting case [19–23, 27]. Note, however, that in
the interacting case the equation for the phase boundary
involves an additional energy scale EF and has a non-
trivial dependence on the electron-electron interactions.

The above procedure leads to a qualitative “phase-
diagram” in terms of the initial parameters of the model.
In Fig. 1(b) we plot the critical curves in y∆0-yb0 space,
for different initial values of interaction K0. The area
below each curve represents the regime for a stable topo-
logical SC supporting MBS. Starting from the inital value
K0 = 0.6 (i.e., strongly interacting wire), note that the
topological region expands as the interaction becomes in-
creasingly attractive.

Topological stability of MBS. To study the effect of
interaction and disorder on the stability of MBS, we
evaluate the energy-splitting δE in the regime where
∆ flows first to strong coupling. As mentioned before,
in order for the topological SC phase to be stable, δE
should scale exponentially with L. Our approach there-
fore consists in integrating the RG-flow up to the scale
`∗ = ln (y∆0) /

(
K−1

0 − 2
)

[i.e., such that y∆ (`∗) = 1],
and calculating there the instanton action Sinst in pres-
ence of the backscattering term in (3). Since in that
regime yb (`∗)� 1, the effect of backscattering can be ac-
counted for perturbatively, and we can make use of the
instanton solution θ0 (τ) found in the clean case. The
contributions of backscattering to Sinst can be divided
into: a) an explicit contribution, arising from the pres-
ence of the term ∼ Db (`∗) 〈cos [2φ (x, τ1)− 2φ (x, τ2)]〉 in
the action, and b) an implicit contribution, originated in
the indirect effect of yb (`) on the other couplings through
the RG-flow equations. Since in the regime of interest ∆
“locks” the phase θ to the minima of the sin 2θ poten-
tial, φ becomes a strongly fluctuating field and therefore
the contribution a) is strongly suppressed, i.e. it scales
as 〈cos [2φ (x, τ)− 2φ (x, 0)]〉 ∼ exp (− |τEF |L/ξ) [39].
This constitutes a subleading correction to Sinst which
is neglected in the following analysis. We therefore focus
on the more important contribution b). The expression
of the instanton action Sinst (`∗) is formally identical to
Eq. (2) with the change K → K (`∗). Integrating RG-

flow Eq. (5) up to the scale `∗ yields (at lowest order in
the parameters y∆ and yb) K (`∗) = Kcl − δKdis, where

Kcl = K0+K0 (4K0 − 2)
−1

is the renormalized Luttinger
parameter in the clean limit le = vτe → ∞, and where
δKdis = K2

0 (3− 2K0)
−1

(kF le)
−1

(kF ξ/2)
ν

is the effect
of disorder [39]. Replacing K (`∗) into (2) yields

Sinst =
4
√
Kcl

π

[
L

ξ
− L

2le

K2
0

Kcl (3− 2K0)

(
kF ξ

2

)ν−1
]
.(9)

This result encodes the interplay of interaction and
(weak) disorder on the topological degeneracy of MBS
through the relation δE ∝ e−Sinst(`

∗), and constitutes an
important generalization of the non-interacting results in
Ref. [23] to the interacting case. Physically, it expresses
the fact that MBS are stable as long as disorder is weak,
such that ξ (kF ξ)

ν−1 � le. Note that the internal consis-
tency of the bosonization approach requires the energy
cutoff Λ0 = vF kF to be much larger than ∆. This im-
plies that kF ξ � 1 and we therefore conclude that effect
of disorder on MBS energy splitting is enhanced (less-
ened) for repulsive (attractive) interactions, which is one
of the main results of this paper. Interestingly, one can
notice that the non-interacting results of Ref. [23] are
recovered for K0 = 1 and ν = 1. While Eq. (9) is only
valid in the regime 1/2 < K0 < 3/2 due to the lowest-
order approximation in the integration of the RG-flow, a
numerical integration of Eqs. (5)-(8) allows to generalize
it to any K0.
Conclusions. We have carried out a RG analysis of

the topological superconductivity in a 1D p-wave SC wire
in the presence of both electron-electron interaction and
disorder, treating them on equal footing. Our results
provide useful insights into their interplay and are rel-
evant to understand more realistic situations (e.g., Ref.
[29]). The solution of the RG-flow Eqs. (5)-(8) combined
with the calculation of the instanton action in Eq. (9)
demonstrate that a topological SC state that supports
stable non-Abelian MBS could be in principle realized
on a large regime of parameter space.
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