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Abstract

The effects of plasma ion motion in self-modulated plasma based accelerators is examined. An

analytical model describing ion motion in the narrow beam limit is developed, and confirmed

through multi-dimensional particle-in-cell simulations. It is shown that the ion motion can lead to

the early saturation of the self-modulation instability, and to the suppression of the accelerating

gradients. This can reduce the total energy that can be transformed into kinetic energy of accel-

erated particles. For the parameters of future proton-driven plasma accelerator experiments, the

ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion

in future experiments are demonstrated.
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Plasma based accelerators (PBA) [1] sustain large amplitude waves that can trap and

accelerate particles to high energies in distances more than three orders of magnitude shorter

than conventional devices [2]. Currently, PBAs use . 10 J laser beams [3] (LWFA), and

. 1 kJ electron and positron bunches [5–7] (PWFA) to accelerate ' 1 GeV (LWFA) to

' 100 GeV (PWFA) electron bunches. The use of 100 kJ proton bunch drivers to generate

TeV-class electrons was recently proposed in the so called proton-driven plasma-wakefield

accelerator (PDPWFA) [8] which relies on very short proton bunches (σz < 10 µm), with

more than 1011 protons per bunch to excite plasma waves in the blowout regime [9].

The shortest proton bunches currently available, however, are long, with σz & 10 cm.

Thus, a future PDPWFA experiment [10] will operate in weakly relativistic regimes where

two stream-like (self-modulational) instabilities [11] dominate the proton beam dynamics

and wakefield excitation [12, 13]. There are many analogies between self-modulation (S-

M)of lasers and particle beams [14], and this scenario is also of relevance for the propagation

of intense plasma streams in astrophysics [15].

Recent work on the S-M of long particle bunches [10, 12] revealed that the wake am-

plitude and phase velocity can be nearly constant once the instability saturates. How-

ever, it was assumed that the background plasma ions are immobile. This will certainly

not be the case for very long beams when ωpiσz/c � 1 (ωpi =
√

4πn0e2/mi is the ion

plasma frequency, e the elementary charge, and mi the ion mass). It is therefore im-

portant to understand the role of the ion motion in the S-M of very long beams, i.e.

ωpiσz/c = 1.88 × 102(σz/10 cm)
√
me/mi

√
n0[cm−3], where me is the electron mass, and

to determine conditions for which the plasma ion motion can be minimized.

Previous work addressed the role of ion motion due to the space charge forces of ultra-

intense driving electron bunches in the PWFA nonlinear blowout regime [18]. Here we

explore the motion of the plasma ions in the linear regime, where the ions respond to the

plasma wave ponderomotive force.

In this Letter, we show that the background plasma ion motion can play a key role in the

S-M of proton beams. An analytical model, confirmed by multi-dimensional particle-in-cell

(PIC) simulations in OSIRIS [17], demonstrates that ions move due to the nonlinear plasma

wave ponderomotive force on plasma electrons. Future PDPWFA experiments will operate

in the narrow beam limit for which there has been little work, and where fluid theory may fail

due to phase mixing. We thus used the plasma sheet model [16] to describe wake excitation
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in this limit and derive exact expressions for the ponderomotive force. Full-scale simulations

in conditions of the PDPWFA reveal that the ion motion suppresses the transverse self-

modulation instability (SMI), and reduces the accelerating wakefields throughout most of

the proton bunch. Preventing the ion motion is therefore crucial, in particular for a future

PDPWFA experiment, and heavy ion plasmas (e.g. Ar+) are required to prevent it.

We start with the plasma fluid equations. The linearized continuity equation for the

ions is ∂ni1/∂t + n0∇ · vi1 = 0, where ni = n0 + ni1 is the ion density, n0 the background

plasma density, ni1 � n0 and vi1 � c the perturbed ion density and velocity respectively,

and t the time. We assume cold ions (Ti = 0) such that the linearized Euler’s equation is

dvi1/dt = ZeE/mi, where E is the electric field, and Z the ion charge. To obtain E we

ignore the electron inertia and assume that ni = ne which is true if λ2
d∇2(ne/n0)� 1, giving

eE = kTe∇(ni/n0) + Fp where Fp is the nonlinear ponderomotive force on the electron, Te

the electron temperature, λd =
√
kTe/4πn0e2 the Debye length, k the Boltzmann’s constant,

and ∇2 the Laplacian operator. Differentiating the ion continuity equation, substituting the

dvi1/dt from the Euler’s equation, and using E from the electrons’ Euler equation then

gives:

mi

[
c2 ∂

2

∂ξ2
− c2

s∇2

]
ni1 = −n0Z∇ · Fp, (1)

where cs =
√
ZkTe/mi is the ion sound speed, and where (ξ = z − ct, r = r, τ = t).

Equation (1) describes the evolution of the ion density in a warm plasma with ni1 � n0.

For a plasma wave with frequency ωp, then Fp = e2/(4meω
2
p)∇Ê2 [19], where Ê is the

envelope of the plasma wave electric field.

We consider cylindrically symmetric drivers such that E, ne, and ni only depend on

the radius r, on z, and on t. In general both radial and longitudinal components of Fp

should be included [21]. For cigar-shaped drivers with σz � σr, however, |Fp⊥| � |Fp‖|

since ∂z ' 1
σz
� ∂r ' 1

σr
. In addition, for narrow beams with σr � c/ωp, Ez � Er since

the motion of the plasma electrons is preferentially along r and not along z. Under these

assumptions, and for a cold plasma, Eq. (1) reduces to:

mic
2∂

2ni1
∂ξ2

= − n0Ze
2

4meω2
p

∇2
rÊ

2
r . (2)

Furthermore for narrow and small amplitude wakes the plasma response is dominated by

the electrostatic forces for Er, so we can obtain Fp for narrow bunches using Dawson’s sheet

model [16] where non-relativistic, electrostatic radial oscillations of cylindrically symmetric
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electron rings are considered. In the absence of trajectory crossing the equation of motion

for an electron ring is [16]:
d2r

dξ2
= −

ω2
pr

2
+
ω2
pr

2
0

2r
− eEb

r

me

, (3)

where r is the radial position of the electron ring, and r0 its initial radial position. The

first term on the right hand side of Eq. (3) corresponds to the ion channel focusing field

(Ei
r), the second to the electrostatic repulsion from the plasma electrons (Ee

r) inside the ring

(the charge inside the ring of electrons remains fixed if the electron rings do not cross), and

the third to the radial force associated with a cylindrically symmetric particle beam with

electric field Eb
r . We let r = r0 + ∆r(r0, ξ) and expand the right hand side of Eq. (3) into

powers of ∆r/r0 yielding:

c2 d2∆r

dξ2
= −eE

b
r (r0, ξ)

me

− (4)

− ω2
p∆r

(
1 +

e∇r0E
b
r (r0)

ω2
pme

)
+O (∆r)2 ,

where the derivatives are evaluated at r = r0. Equation (4) is also valid in 2D slab geometry.

We consider a flat top driver in ξ with length σz. Inside the beam (0 < ξ < σz), ∆r =

A< (cosφ− 1) where A<(r0) = Eb
r (r0)

meω2
p/e+∇r0E

b
r (r0)

, and φ = (ωpξ/c)
√

1 + (e/ω2
pme)∇r0Eb

r (r0).

Behind the driver (ξ > σz), ∆r = A> cosφ, where A>(r0) =
[
∆r2 + c2/ω2

p(d∆r/dξ)2
]1/2

,

∆r = r(σz) − r0, φ = ωpξ/c + φ0, and φ0 is the phase at ξ = σz. These trajectories are in

agreement with PIC simulation results using narrow drivers (σr � c/ωp).

To determine Er(r) self-consistently the expression for the electron trajectories is in-

serted in Er (r0(r, ξ), r) = Ei
r (r0(r, ξ), r) + Ee

r (r0(r, ξ), r) + Eb
r (r) if r0(r, ξ) was known.

To determine r0(r, ξ), r = r0 + ∆r(r0, ξ) is inverted using the Lagrange’s implicit func-

tion theorem. To lowest order we find r0(r, ξ) by Taylor expanding r(r0) in powers

of ∆r yielding r ' [r − A<(cosφ− 1)] − [1 + ∇rA<(cosφ − 1)]∆r for ξ < σz, and

r ' r−A> cosφ+ (1 +∇rA> cosφ)∆r for ξ > σz, and then by solving these expressions for

r0. Inserting the result into the right hand side of Eq. (4) yields:

Eξ<σz
r =

Êr<(−1 + cosφ)

1 +∇reÊr</(meω2
p)(cosφ− 1)

, (5)

for ξ < σz and :

Eξ>σz
r =

Êr> cosφ

1 +∇reÊr>/(meω2
p) cosφ

, (6)
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for ξ > σz, where Êr≷ = meω
2
pA≷/e is the amplitude of the radial plasma wave. When

Êr≷(e/meωp) � 1, and ∇rÊr≷(e/meωp) � ωp/c, Er is purely sinusoidal. However, when

narrow drivers are used, ∇rÊr≷(e/meωp) & ωp/c and the wake becomes anharmonic even

though Êr≷(e/meωp) � 1. Excellent agreement was found between the analytical model

and PIC simulations [22] using narrow drivers, where linear fluid theory fails to accurately

describe wake excitation.

The average Er over a plasma oscillation is finite. This can be interpreted as the

electrostatic force from the ions that is required to balance a nonlinear average force

pushing electrons outward. Thus, Fp⊥ = |Fp⊥| is simply obtained by averaging Er over

one oscillation, i.e. e〈Er〉 = Fp⊥. Using the fact that
∫ 2π

0
[1 + x(cosφ− 1)]−1 dφ =

−(1 + 2x)−1/2,
∫ 2π

0
cosφ/ [1 + x(cosφ− 1)]−1 dφ = (1 + x −

√
1 + 2x)/(x

√
1 + 2x), and∫ 2π

0
cosφ/ (1 + x cosφ)−1 dφ = [1− (1−x2)−1/2]/x [20], then the average value of Eq. (5) for

ξ < σz, and near the axis becomes :

〈Er〉ξ<σz =
meω

2
pr

e

1− 1√
1− 2e

meω2
p
∇rÊr<

+ Eb
r , (7)

and the average value of Eq. (6) for ξ > σz at any r becomes :

〈Er〉ξ>σz =
meω

2
p

e

Êr>

∇rÊr>

1− 1√
1− e2

m2
eω

4
p
(∇rÊr>)2

 . (8)

Equations (7,8) generalize the fluid theory nonlinear ponderomotive force (Fp = e〈Er〉)

for narrow plasma waves and are correct to lowest order in r − r0, i.e. they are valid as

long as Êr≷ is calculated for sinusoidal trajectories. The corrections due to anharmonic

oscillations in ∆r could also be included by considering higher order terms in Eq. (4). To

make a connection to the usual expression for Fp we make a Taylor series expansion for small

∇rÊr in Eq. (8) which yields Fp⊥ = −e2/(4meω
2
p)∇rÊ

2
r + O

(
Ê4
r

)
. Equations (7-8) differ

from F fl
p⊥ when the wakefield becomes nonlinear; the wake can be anharmonic even when

e/(meωpc)Êr � 1 if e/(meω
2
p)∇rÊr . 1, if σr � c/ωp [22]. This is the limit of relevance for

the PDWPFA.

The ion density perturbations in the wake of proton bunches can now be found by

substituting 〈Er〉 into Eq. (2). For ξ � c/ωpi this yields ni = n0

[
1 + eZξ2

2mic2
∇ · 〈Er〉

]
.

Near the axis where Êr ' r∇rÊr|0, then, for ξ < σz, nξ<σzi = ni0[1 −
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meZω2
pξ

2

mic2
(1 − (1 − 2e

meω2
p
∇rÊr<)−1/2 + e

meω2
p
∇rE

b
r)]. For ξ > σz, at any r, nξ>σzi =

n0

[
1− meZω2

pξ
2

mic2

(
1− (1− e2(∇rÊr>)2/m2

eω
4
p)
−1/2

)]
. Thus, Fp⊥ pulls the plasma ions to-

wards the axis. Ion density voids are also formed near the edge of the wakefield.

These theoretical predictions were compared with 2D slab geometry and 3D PIC

simulations. The simulations used a 3D (2D) window moving at c, with dimensions

200×4×4(c/ωp)
3 (400×4(c/ωp)

2), and a grid with 2560×512×512 (10240×1024) cells in the

longitudinal and transverse directions respectively. Each cell contains 2× 1× 1 (2× 2) elec-

trons and ions with mass mi = 1836 me. The simulations considered Eb
r = αbr exp [−r2/σ2

r ].

Both finite flat-top and infinite drivers were used. The values for αb and σr are given in Fig. 1.

Figure 1 shows the simulations and the predictions from the analytical model (Eqs. (1), (7,8))

(where ∇2 = d2/dr2 was used in 2D). There is excellent agreement for this range of param-

eters. Additional simulations with smaller σr confirmed that fluid theory underestimates

the ion density modulations whereas the predictions based on the ring model reproduce the

simulation results accurately [22].

If the wake is excited by a self-modulated particle beam then it will grow in ξ back

through the bunch. If the S-M is constant then the wake will grow secularly in ξ. Under

these conditions Erwake � Erbeam so the ponderomotive force can be obtained from Eq. (8).

We compared the predictions for ni using the full value for 〈Er〉 in Eq. (8) and the first

term in the expansion e〈Er〉 ' −e2/(4meω
2
p)∇rÊ

2
r for σz = 100c/ωp, nb = 0.01 − 0.04n0

and σr � 1. We assumed that Êr grew secularly with a resonant driving term of Erb. We

find that keeping only the first term in the expansion underestimates the ion fluctuations,

δ ≡ (ni − n0)/n0 in a wide range by 2-45%.

As a guide, one can estimate the position within the beam for which the ion compression

on-axis is smaller than an accepted value for δ. Assuming secular growth for Êr, this occurs

when ξcrit/σz . 1 where ξcrit is the required distance for δ ' 1 at r = 0. In self-modulated

regimes the onset of the ion motion then occurs when:

ξcrit

σz
=

(
mic

2

meZσ2
zω

2
p

)1/2(4πmeω
2
p

e∇Eb
r

− 3eσ2
z∇Eb

r

8πmec2
+O(Eb

r)
2

)
(9)

Equation (9) shows that the ion motion can be minimized in the presence of heavier plasma

ions (i.e. lower mi/Z). The leading order term coincides with the fluid theory result, and the

remaining terms are corrections associated with the generalized ponderomotive force. For

the expected initial parameters of the PDPWFA, where n0 = 1014 cm−3, nb = 1012 cm−3,
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FIG. 1: Comparison between the ion density profile (∆n = ni−n0) analytical predictions (dashed

lines) with 3D (a-b) and 2D (c-f) OSIRIS PIC simulations (solid lines). (a,c,e) 3D on-axis plasma

proton density profile. (b,d,f) corresponding transverse density profiles at the ξ of the vertical

dashed lines.

and σz ' 12 cm, Eq. (9) shows that the ion motion is not important since ξion/σz � 1.

However, for self-modulated beams ξcrit/σz & 1, and the plasma ion motion can become

important. To lowest order, the onset of ion motion beyond ξ = σz can be reached by using

more massive ions such that [mi/me]
SM & 0.08σ4

z [cm]n2
b [1012 cm−3]/δ. For a δ = 0.05, a

mass ratio of [mi/me]
SM & 40 × 103 is required. This indicates that singly ionized Argon

plasmas (or heavier) could be used to avoid the deleterious effects of the ion dynamics.

We have performed fully self-consistent simulations of the PDPWFA using 2D cylin-

drically symmetric geometry. The simulations used a moving window with dimensions

680 × 8(c/ωp)
2, divided into 13600 × 320 cells, with 2 × 2 electrons and ions per cell.

Plasmas with mi/me = 1836 (H+), mi/me = 73440 (Ar+), and mi = ∞ (immo-

bile ions) were considered with n0 = 1014 cm−3. An SPS-LHC CERN proton bunch

was initialized with an energy of 450 GeV and with a half-cut density profile given by
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nb = nb0

[
1 + cos

(√
π/2(z − z0)/σz

)]
exp [−r2/(2σ2

r)] for 0 < z < z0 = σz
√

2π, with

nb0/n0 = 0.0152, σz = 225.6 c/ωp = 12 cm, and σr = 0.376 c/ωp = 200 µm.

The simulations confirm that the motion of the plasma ions can be neglected until the

bunch significantly self-modulates. Once the bunch self-modulates, the (H plasma) ion

compression strongly modifies the wakefields. The plasma electron and ion density after the

beam has been self-modulated are shown in Figs. 2a-b. Ions have not moved significantly

at the front of the proton bunch (ξ . 250c/ωp). However, for ξ & 250c/ωp, the on-axis ion

density grows such that ni/n0 � 1. Ion density voids, where ni/n0 ' 0, are also formed

near r ' σr. The strong ion motion leads to electron trajectory crossing (Fig. 2a). The

electron flow becomes turbulent, the plasma reaches a quasi-neutral state, and the wakefield

disappears for ξ ≥ 400 c/ωp (Fig. 3).

If a H plasma is used the SMI slows down or becomes suppressed at the back of the beam

(ξ & 250c/ωp) because the plasma becomes quasi-neutral and fields become smaller. This is

why the proton bunch density modulations are less pronounced in Fig. 3b than in Fig. 3a.

Although the bunch is fully self-modulated in Fig. 3a some of the protons are still inside the

box as revealed by the structures at r ∼ c/ωp. The reason for the slowdown/suppression

of the SMI is also seen in Fig. 3c showing that the SMI driving field Er − Bθ vanishes

at the back of the bunch. The amount of energy that can be transferred to accelerated

particles is also smaller when ion motion occurs (inset of Fig. 3c). The inset of Fig. 3c

also illustrates the slowdown of the SMI when plasma ion motion occurs. Similarly to the

focusing force, and also because the plasma is quasi neutral, the accelerating fields drop

abruptly for ξ & 250c/ωp, i.e. when plasma ions move. This further reduces the proton

bunch energy modulations, and the energy that can be transferred to accelerated particles.

Little ion motion occurs when Ar+ ions are used, and the SMI and Eaccel develop as if ions

are immobile. This is in excellent agreement with our theoretical results. These results

strongly suggest that a future PDPWFA experiment could be performed with Ar plasmas.

There are additional factors that may also change the growth of the instability including

detuning due to strong energy chirps along the beam, or the presence of plasma density

ramps [23]. In realistic conditions, however, these effects are not as important as the plasma

ion motion.

In conclusion, we showed that the plasma ion dynamics can strongly affect a future

PDPWFA experiment. It causes the early saturation of the self-modulation instability,
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FIG. 2: 2D cylindrically symmetric OSIRIS simulations of a PDPWFA at τ = 11450/ωp (6.1 m)

in an Hydrogen plasma. (a) Plasma electron density. The inset shows sample electron trajectories

colored according to the initial radius (b) Corresponding plasma ion density. The horizontal solid

line represents the driving ion beam density profile. The arrow indicates the propagation direction.

The vertical solid line is a lineout of ni at ξ = 640c/ωp.

reduces the accelerating gradients, and hence limits the energy transfer from the driver

to accelerated particles. The conditions to minimize the impact of the ion motion were

identified. This work demonstrates that the deleterious effects associated with the plasma

ion motion can be avoided by resorting to plasmas with higher ion charge to mass ratios.
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