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Zonal flows and, more generally, zonal structures are known to play important self-regulatory roles in
the dynamics of microscopic drift-wave type turbulences. Since Toroidal Alfvén Eigenmode (TAE) plays
crucial roles in the Alfvén wave instabilities in burning fusion plasmas, it is, thus, important to understand
and assess the possible roles of zonal flow/structures on thenonlinear dynamics of TAE. It is shown that
zonal flow/structure spontaneous excitation is more easilyinduced by finite amplitude TAEs including the
proper trapped ion responses, causing the zonal structure to be dominated by the zonal current instead of
the usual zonal flow. This work shows that proper accounting for plasma equilibrium geometry as well
as including kinetic thermal ion treatment in the nonlinearsimulations of Alfvénic modes are important
ingredients for realistic comparisons with experimental measurements, where the existence of zonal fields
has been clearly observed.

Zonal flows and, more generally, zonal structures are
known to play important self-regulatory roles in the dy-
namics of microscopic drift-wave type turbulences. In fact,
zonal structures have a unique role in the cross-scale cou-
pling of disparate spatiotemporal scales in burning plas-
mas as complex systems [1], for they are predominantly
only radially varying onmesoscales, intermediate between
those of turbulence and macroscopic plasma equilibrium.
In the absence of velocity-space free energy, zonal struc-
tures are linearly stable, due to their intrinsic symmetry [2],
but may be forced driven via nonlinear mode coupling. In
such case, their damping effect on the driving modes is
proportional to the zonal structures intensity and dissipa-
tion rate; i.e., it vanishes in the dissipationless limit, which
is the relevant case for burning plasmas of fusion interest.
Thus, the self-regulation is essentially achieved viasponta-
neous excitations of modulational instabilitiesabove a crit-
ical threshold in the driving fluctuation intensity, by which
zonal structures act as non-local spectral transfer of en-
ergy. Meanwhile, the driving instabilities are themselves
scattered by the zonal structures into shorter radial wave-
length sidebands, and, consequently, into the short-radial
wavelength stable domain.

Zonal electric fields and corresponding zonal flows have
been widely measured in experiments and their observed
properties are consistent with the existing general theo-
retical framework [3]. Meanwhile, zonal magnetic fields
(zonal currents), predicted by theoretical analyses [3–6],
have been only recently observed in experiments in the
compact helical system (CHS) [7]. Such observation is
important for the implications that zonal magnetic fields
may have in understanding fundamental processes, such
as magnetic field dynamo, as well as for the understand-
ing of nonlinear dynamics of Toroidal Alfvén Eigenmodes
(TAEs), which play crucial roles among Alfvén wave in-
stabilities in magnetized plasmas of fusion interest.

The effects of zonal flows [8] and nonlinear mode cou-
plings, due to zero-frequency axisymmetric nonlinear dis-
tortions of equilibrium magnetic field [9] or density [10],
were proposed as possible saturation mechanism in the
nonlinear dynamics of TAEs. More recently, numerical
simulation results have shown that low frequencyforced
driven zonal flows may have a role in the nonlinear TAE
saturation [11], but have not observedspontaneousexcita-
tion of zonal structures.

In this work, we address thespontaneousexcitation of
zonal structures by TAEs, i.e. of both zonal flows and cur-
rents, and show that spontaneous excitation is more eas-
ily induced by finite amplitude TAEs including the proper
trapped ion responses, causing the zonal structure to be
dominated by the zonal current instead of the usual zonal
flow. Our analysis is carried out assuming a simple toka-
mak equilibrium with shifted circular magnetic flux sur-
faces; however, results summarized by Eq. (22) are very
general and show that the branching ratio (relative strength)
of zonal flows and currents and the onset condition for
modulational instability crucially depend on plasma equi-
librium and kinetic response. Thus, for realistic compar-
isons with experimental observations in toroidal plasmas,
theoretical analyses and numerical simulations must rely
on kinetic descriptions in realistic equilibrium geometries.

Here, we adopt the theoretical approach of [4] as well
as [12]. Thus, the field variablesδφ andδA‖ are used to
investigate the nonlinear couplings among the pump TAE,
(ω0,k0), the upper and lower TAE sidebands,(ω±,k±),
and the zonal mode(ωz,kz). Indicating TAE and zonal
mode with the subscriptsA andz, respectively, one then
has, for example,δφ = δφA + δφz andδφA = δφ0 +
δφ+ + δφ−. Assuming, for simplicity, that we deal with
high toroidal mode numbers TAE, as those expected in
ITER [13, 14], we adopt the well known ballooning-mode
decomposition in(r, θ, φ) field-aligned toroidal flux coor-



2

dinates [15]

δφ0 = A0e
i(nφ−m0θ−ω0t)

∑

j

e−ijθΦ0(x− j) + c.c.,

δφ± = A±e
±i(nφ−m0θ−ω0t)ei(

∫
r kzdr−ωzt)

×
∑

j

e∓ijθ
[

Φ0(x− j)
Φ∗

0(x− j)

]

+ c.c., (1)

and

δφz = Az exp

[

i(

∫ r

kzdr − ωzt)

]

+ c.c.. (2)

Here,(m = m0 + j, n) are poloidal and toroidal mode
numbers,m0 is the reference poloidal mode number,
nq(r0) = m0, q(r) is the safety factor,x = nq −m0 =
nq′(r − r0) andA0, A± andAz are the envelope am-
plitudes of TAE pump, sideband and zonal mode, respec-
tively, having used

∫

|Φ0|2dx = 1 as normalization con-
dition. The same decomposition of Eqs. (1) and (2) is as-
sumed for the parallel vector potential.

Considering|k⊥ρi|2 ∼ |kzρi|2 < ǫ = r0/R0 < 1, with
ρi the thermal ion Larmor radius andR0 the torus major
radius, we obtain the vorticity equation of the zonal mode
from [4] (where(r, φ, θ) flux coordinates were adopted)

iωzχizδφz =
c

B0

kzkθk
2
zρ

2
i

×
〈(

1−
k20‖v

2
A

ω2
0

)〉

x

(A∗
0A+ −A0A−) . (3)

Here, χiz ≃ 1.6q2ǫ−1/2k2zρ
2
i [2], kθ = nq/r, k‖ =

x/qR0 and〈...〉x ≡
∫

dx|Φ0|2(...). Noting that|Φ0|2(x)
is localized at and even with respect to|x| = 1/2, with a
characteristic width∆x ∼ O(ǫ), we then have

〈(ω2
0 − k20‖(x)v

2
A)〉x ≃

〈(

ω2
0 −

ω2
A

4

)

(4)

+

[

ω2
A

4
− k20‖(x)v

2
A

]〉

x

≃
(

ω2
0 −

ω2
A

4

)

+O(ǫ2) ,

whereωA = vA/(qR0); thus, Eq. (3) becomes

iωzχizδφz =
c

B0

kzkθk
2
zρ

2
i

(

1− ω2
A

4ω2
0

)

(A∗
0A+−A0A−).

(5)
Meanwhile, considering the strong electron current screen-
ing effect on scale lengths that are longer than the col-
lisionless skin depthδe = c/ωpe, with ωpe the electron
plasma frequency, and noting thatδe ≪ ρi for me/mi ≪
β ≪ 1, β denoting the ratio between kinetic and mag-
netic energy densities, the evolution equation forδA‖z or
δψz ≡ ω0δA‖z/ck0‖ is δjz‖e ≃ 0, i.e.

δψz = i
c

B0

kzkθ
ω0

(A∗
0A+ +A0A−) . (6)

Including the nonlinear correction to the ideal Ohm’s
law, for the(ω±,k±) TAE sidebands, the vorticity equa-
tions can be rendered into the following forms [4];

A±L±

[

Φ0(x)
Φ∗

0(x)

]

= 2i
c

B0

kθkzω0

[

A0

A∗
0

]

× (δφz − δψz)∇2
0

[

Φ0(x)
Φ∗

0(x)

]

, (7)

where

L± = ω2
Ax∇2

±x− ω2
±(1 + ǫ0T )∇2

± , (8)

T∇2
±

[

Φ0(x)
Φ∗

0(x)

]

= ∇2
±

[

Φ0(x+ 1) + Φ0(x− 1)
Φ∗

0(x+ 1) + Φ∗
0(x− 1)

]

,

(9)

∇+Φ0 = [−θ̂ikθ + r̂(ikz + nq′∂xlnΦ0)]Φ0 , (10)

∇−Φ
∗
0 = [θ̂ikθ + r̂(ikz + nq′∂xlnΦ

∗
0)]Φ

∗
0 , (11)

ǫ0 = 2ǫ+∆′ [16], ∆′ is the Shafranov shift and

∇0Φ0 = (−θ̂ikθ + r̂nq′∂xlnΦ0)Φ0 . (12)

Performing
∫∞

−∞
dx(Φ0,Φ

∗
0) on Eq. (7), we obtain

A±ǫA±b± = −2i
c

B0

kθkzω0b0

(

A0

A∗
0

)

(δφ − δψ)z ,

(13)
whereb0 = ρ2i 〈|∇0Φ0|2〉x, b+ = ρ2i 〈|∇+Φ0|2〉x = b0 +
bz, bz = k2zρ

2
i andb− = b+. Meanwhile [19],

ǫA± =

(

ω4
A

ǫ0ω2
ΛT (ω)D(ω, kz)

)

ω=ω±

, (14)

D(ω, kz) =
(

ΛT (ω)− δŴ (ω, kz)
)

, (15)

with ΛT =
√−Γ−Γ+, Γ± = (ω2/ω2

A− 1/4)± ǫ0ω2/ω2
A

[16] andδŴ (kz, ω) playing the role of a normalized po-
tential energy, which, besides its obvious dependence on
kz and other parameters characterizing the local plasma
equilibrium, can also depend on the mode frequency, since
the TAE mode structure in the ideal MHD region depends
on the TAE mode frequency inside the toroidicity induced
gap in the shear Alfvén continuous spectrum. Solutions of
D(ω, kz) = 0 areω = ±ωT (kz), with the pump TAE
frequency given byω0 = ωT (kz = 0).

Combing Eq. (13) with Eqs. (5) and (6) and letting
−iωz = γz yield

δφz = 2i

(

c

B0

kθkz

)2(

1− ω2
A

4ω2
0

)

bz
χiz

b0
b+

×ω0

γz
|A0|2

(

1

ǫA+

− 1

ǫA−

)

(δφ − δψ)z , (16)

and

δψz = 2

(

c

B0

kθkz

)2 b0
b+

|A0|2

×
(

1

ǫA+

+
1

ǫA−

)

(δφ − δψ)z . (17)
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Noting that

D(ω±, kz) = ± ∂D

∂ω0

(iγz ∓∆T ) , (18)

with ∆T ≡ ωT (kz)−ω0, Eqs. (16) and (17) further reduce
to

δφz = 2

(

c

B0

kθkz|A0|
)2 (ω2

0

ω2
A

− 1

4

)(

bz
χiz

)

×
(

b0
b+

)

ǫ0
ΛT (ω0)

2ω0/ω
2
A

∂D/∂ω0

(δφ − δψ)z
γ2
z +∆2

T

≡ −αφT
(δφ − δψ)z
γ2
z +∆2

T

, (19)

and

δψz = −2

(

c

B0

kθkz|A0|
)2(

b0
b+

)

×ǫ0ω
2
0/ω

2
A

ΛT (ω0)

2ω0/ω
2
A

∂D/∂ω0

∆T/ω0

γ2
z +∆2

T

(δφ− δψ)z

≡ −αψT
(δφ− δψ)z
γ2
z +∆2

T

. (20)

Equations (19) and (20) then yield the following desired
dispersion relation

γ2
z = αψT − αφT −∆2

T ; (21)

i.e., modulational instability will set in when
(

c

B0ω0

kθkz|A0|
)2( b0

b+

)

ǫ0
ΛT (ω0)

4ω0/ω
2
A

∂D/∂ω0
[

∆T

ω0

ω2
0

ω2
A

+
bz
χiz

(

ω2
0

ω2
A

− 1

4

)]

>

(

∆T

ω0

)2

. (22)

Note that, typically, |∆T/ω0| ∼ O(ǫ0) and |bz(1 −
ω2
A/4ω

2
0)/χiz| ∼ O(ǫ

3/2
0 /q2). Furthermore, we gener-

ally haveω0∂D/∂ω0 > 0 in the ideal MHD first stability
region for ideal ballooning modes [19]. Thus, Eq. (22) be-
comes approximately

∆T/ω0 > 0 , (23)

and
(

c

B0ω0

kθkz|A0|
)2 ( b0

b+

)

×ǫ0ω
2
0/ω

2
A

ΛT (ω0)

4ω0/ω
2
A

∂D/∂ω0

>

(

∆T

ω0

)

. (24)

This condition is essentially determined by thesponta-
neous excitationof the zonal fieldδψz , given by Eqs. (6)
and (20), which dominates over the usual zonal flowδφz ,
defined in Eqs. (5) and (19). As to the sign of∆T/ω0,
Eq. (23), it depends on specific equilibria and parameters,
and must be calculated for individual cases. Note that, for
∆T/ω0 < 0, Eq. (22) may still be satisfied forω2

0 > ω2
A/4

and small|∆T/ω0|; however, withδφz dominating over
δψz .

In order to give quantitative estimates for the onset con-
dition of the modulational instability, we recall that linear
TAE analysis gives [17–19]

ǫ0ω
2
0/ω

2
A

ΛT (ω0)

2ω0/ω
2
A

∂D/∂ω0

∼ 1 . (25)

Thus, assumingbz<∼ k2θρ
2
i ∼ ǫ0b0 and notingk‖ ≃

1/2qR0, the threshold condition for spontaneous excita-
tion becomes
(

c

B0ω0

kθkz|A0|
)2

∼
∣

∣

∣

∣

∆T

ω0

∣

∣

∣

∣

∼ ǫ0
bz
k2θρ

2
i

∼ bz
ǫ0
, (26)

having considered the maximumb0 ∼ ǫ0; or, in terms of
δBr/B0,

∣

∣

∣

∣

δBr
B0

∣

∣

∣

∣

2

th

∼ ρ2i
4ǫ0(qR0)2

. (27)

This estimate yields|δBr/B0|2th ∼ O(10−8) for some
typical tokamak parameters. This suggests that sponta-
neous excitation of zonal structures may be a process effec-
tively competing with other nonlinear dynamics in deter-
mining the saturation level of TAE modes. Above thresh-
old, one can estimate

γz ≃ ǫ
−1/2
0 b1/2z kzvA

∣

∣

∣

∣

δBr
B0

∣

∣

∣

∣

, (28)

andbz ∼ ǫ20 for the most unstable growing zonal structures
with γz ≃ ǫ1/20 kzvA|δBr/B0|, consistently with Eq. (26).

It is important to note that Eqs. (23) and (24) have been
derived under the condition|k⊥ρi|2 ∼ |kzρi|2 < ǫ =
r0/R0 < 1, which is reasonable and usually applies for
TAEs excited by energetic ions in burning plasmas of fu-
sion interest [14]. For shorter wavelengths, or equivalently
ǫ → 0, both δφz andδψz become increasingly smaller,
as we can readily recognize from Eqs. (19) and (20), since
ω2
0/ω

2
A − 1/4 → 0 and∆T/ω0 → 0. This is due to the

cancellation of the Reynolds and Maxwell stresses, yield-
ing the well known properties of theAlfvénic state[20–
24], which is broken in the present case by the toroidal ge-
ometry of the considered plasma equilibrium, showing the
importance of equilibrium geometry in determining both
linear and nonlinear plasma dynamic behaviors. Thus, at
sufficiently short wavelengths or in simpler plasma equi-
libria, Eqs. (19) and (20) must be suitably modified (see
e.g. [25] and references therein for a recent discussion of
this issue); such analysis, however, is beyond the scope
of the present work and will be discussed elsewhere. It
is also important to note that the zonal structure is domi-
nated by the zonal current instead of the usual zonal flow
because of magnetically trapped-ion enhanced polarizabil-
ity, χiz ≃ 1.6q2ǫ−1/2k2zρ

2
i [2],

|δφz|/|δψz | ≈ |kzρi|2/|χiz| ≈ O(ǫ1/2/q2) < 1. (29)
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Indeed, if one adopts the MHD model without trapped ions,
so that,χiz ≃ k2zρ

2
i , and, correspondingly,δφz ≈ δψz ,

spontaneous excitation of zonal structures is still possible,
given∆T/ω0 > 0; i.e., Eq. (23). However, in the lower
half of the TAE frequency gap,ω2

0/ω
2
A < 1/4, where TAE

are preferentially located when strongly driven by supra-
thermal ions [17, 18], the threshold condition is larger than
that of Eq. (24). Meanwhile, for∆T/ω0 < 0, spontaneous
excitation of zonal structures is found only in the upper half
of the TAE frequency gap,ω2

0/ω
2
A > 1/4, as noted above;

contrary to the case including the proper trapped ion re-
sponses. All these considerations may provide a plausible
explanation for the simulation results of Todo et al. [11],
where the zonal mode response is found to be forced driven
by TAE rather than spontaneously excited. The importance
of including proper trapped-ion dynamics for the correct
prediction of the spontaneous excitation of zonal flows by
electrostatic drift-type turbulence in toroidal plasmas was
pointed out in [26], where a comparative analysis of slab
and toroidal plasma equilibria is discussed. In that case,
the result of adopting a simplified geometry description
was quantitatively different but qualitatively the same asin
the more realistic plasma equilibrium. In the present case,
however, the physics picture changes both quantitatively
and qualitatively. Including kinetic thermal ion treatment
in the nonlinear simulations of Alfvénic modes [27–29] is,
thus, an important ingredient for realistic comparisons with
experimental measurements, where the existence of zonal
currents/magnetic fields has been clearly observed [7]. Fur-
thermore, these results demonstrate the crucial roles played
by equilibrium geometry in determining the nonlinear dy-
namics of Alfvén modes, with obvious impact on the fluc-
tuation induced radial transport of energetic particles and,
ultimately, on the fusion performance.

As a final remark, it is worthwhile mentioning some
further reflection based on the structure of Eq. (22). In
the ideal MHD second stability region for ideal balloon-
ing modes, which may be of interest for high perfor-
mance burning plasma operations, TAE modes generally
haveω0∂D/∂ω0 < 0. This means that zonal structures
would be still dominated by zonal currents, but for equilib-
ria such that∆T/ω0 < 0. We also note that the structure
of Eq. (22) is specific to tokamaks only through the quan-
tity entering Eq. (25),∆T/ω0 andbz/χiz . These quanti-
ties regulate the branching ratio (relative strength) of zonal
flows and currents and the onset condition for the modula-
tional instability; in other words, the self-regulatory effect
of zonal structures on TAE modes. It, therefore, will be in-
teresting, by a suitable extension of these terms, to general-
ize the present theoretical framework to other toroidal con-
figurations; each maintaining its specificities via the TAE
local dispersiveness and the branching ratio of zonal cur-
rents and zonal flows being set by size of the ratiobz/χiz .
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