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Thin shells are found in nature at scales ranging from viruses to hens’ eggs; the stiffness of such
shells is essential for their function. We present the results of numerical simulations and theoretical
analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized
and unpressurized shells. We provide a theoretical foundation for the experimental findings of
Lazarus et al. [Phys. Rev. Lett. (submitted)] and for previous work inferring the turgor pressure
of bacteria from measurements of their indentation stiffness; we also identify a new regime at large
indentation. We show that the indentation stiffness of convex shells is dominated by either the
mean or Gaussian curvature of the shell depending on the pressurization and indentation depth.
Our results reveal how geometry rules the rigidity of shells.
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Everyday experience shows that it is easier to crack an
egg on its side than at its tip. This observation has led
to demonstrations in children’s science programmes, such
as the successful landing of a helicopter on an array of
eggs [28]. This rigidity is a common feature of other con-
vex elastic shells ranging from viral capsids, plant and
fungal cells to the pressure vessels used to store gases.
Although this rigidity is known to be geometric in origin
(such shells cannot deform without stretching) and con-
ditions on whether a shell is geometrically rigid have been
derived [2], this property has not been comprehensively
quantified.

A common assay of a shell’s rigidity is the measure-
ment of an ‘indentation stiffness’. This test can be
performed at scales ranging from nanoscale viruses [3]
through microscopic polymer capsules [4] to macroscopic
beach balls [5]. Theoretical predictions for the inden-
tation stiffness of spherical shells are well known [6–8]
and have recently been extended to incorporate the ef-
fect of an internal pressure [5]. The predictions of these
models have been borne out by experiments on micro-
scopic capsules and membranes [4, 9–11], and macro-
scopic balls [5, 8, 12, 13]. The theoretical study of cylin-
ders under indentation is limited to some specific exam-
ples, namely cytoskeletal microtubules [14] and bacterial
cells [15], while at a macroscopic scale thin sheets bent
into cylindrical shapes have been studied [16, 17].

Although most previous theoretical work has addressed
the idealized cases of spherical or cylindrical shells, an un-
derstanding of the behavior of ellipsoidal shells would of-
ten be more appropriate, particularly in the case of yeast
cells [18, 19] or bacteria [15]. Numerical explorations of
more general shapes and mechanical properties include
shells of arbitrary convexity [20] as well as axisymmetric
membrane shells in a nonlinear elastic framework mo-
tivated by seed germination [21]; however, no quantifi-

cation of the indentation stiffness was provided in these
studies. Recently, a comprehensive experimental study of
the stiffness of moderately elongated ellipsoids [22] has
been presented, leading the authors to propose heuris-
tic formulae for the stiffness and call for more theoretical
work. In this Letter we use theoretical arguments and nu-
merical simulations to provide a comprehensive study of
the geometrical rigidity of convex thin shells. Our model
experiment is the indentation of a shell at a single point
(see fig. 1). By considering shells with and without an
applied pressure difference we demonstrate that an im-
portant component of the geometrical rigidity disappears
with the application of such a pressure difference.
The important feature of a shell are its radii of cur-

vature, and so we lose little generality by considering an
ellipsoidal elastic shell with axes a, b and c and centered
at the origin (see fig. 1). The surface of the ellipsoid is
thus given in Cartesian coordinates by

x2

a2
+

y2

b2
+

z2

c2
= 1 (1)

The shell has Young’s modulus E, Poisson ratio ν and
thickness t, yielding a bending stiffness B = Et3/[12(1−
ν2)]. For simplicity, we shall assume here that indenta-
tion occurs at the point (0, 0, c) (see fig. 1). The question
of principal interest in this Letter is the relationship be-
tween the indentation force applied, F , and the indenta-
tion displacement, δ. To answer this question, we shall
develop a model based on the theory of shallow shells
[23, 24]. In this limit, it is the surface shape close to the
point of indentation that matters, and so we write

z ≈ c− x2/2Rx − y2/2Ry (2)

where Rx = a2/c and Ry = b2/c are the principal radii
of curvature. Therefore, although our theoretical results
will be couched in terms of the indentation of an ellipsoid,
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FIG. 1: (Color online) The indentation of ellipsoidal shells.
Main figure: Cut away view of an ellipsoid centered on the
origin and subjected to a point force at (0, 0, c). Inset: Nu-
merically determined force–displacement curve for a spherical
shell with a = b = c = 1 m, E = 70 GPa, ν = 0.3, t = 2 mm
subject to an internal pressure p = 105 Pa. The two linear
regimes considered here are shown as dashed lines.

they apply more generally to shapes with differing radii of
curvature (though we require the Gauss curvature κG =
RxRy > 0).
The midline of the shell is displaced by an amount

w(x, y) from its undeformed state by a given loading.
This deformation is determined by coupling the displace-
ment and loading to the components of the stress within
the shell, which may be written in terms of the Airy stress
function φ as σxx = ∂2

yyφ, σyy = ∂2
xxφ and σxy = −∂2

xyφ.
If the shell is subject to an internal pressure p and the ap-
plication of a point force F then the nonlinear equations
of shallow shell theory may be written [24]

B∇4w +∇2
kφ− [φ,w] = p− F

2π

δ(r)

r
(3)

and

1

Et
∇4φ−∇2

kw = −1

2
[w,w]. (4)

where

[f, g] ≡ ∂2f

∂x2

∂2g

∂y2
− 2

∂2f

∂x∂y

∂2g

∂x∂y
+

∂2f

∂y2
∂2g

∂x2
(5)

and

∇2
k ≡ 1

Rx

∂2

∂x2
+

1

Ry

∂2

∂y2
(6)

is the Vlasov operator [24]. Note that Eq. (3) expresses
the normal force balance on the shell, with the point

forcing represented by a Dirac δ function, and Eq. (4)
representing the compatibility of strains.
To complement our theoretical study of equations (3)-

(4), we also performed numerical simulations using the
commercial finite element package ABAQUS (SIMULIA,
Providence, RI). For these simulations material proper-
ties E = 70 GPa and ν = 0.3 were assumed. For ease of
computation, only the indentation of the half of the shell
with z ≥ 0 was simulated (a symmetry boundary condi-
tion was applied at z = 0). Our simulations used con-
ventional thin shell elements with 3 nodes and quadratic
interpolation; a mesh sensitivity study was performed to
ensure that the results are minimally sensitive to the el-
ement size.
The equations (3)-(4) have previously been studied in

detail for the case of a spherical shell with a = b = c,
i.e. Rx = Ry = R [5]. This analysis showed the presence
of two regimes in the force–displacement curve (see in-
set of fig. 1). For displacements smaller than the shell

thickness, δ ≪ t, the indentation force F = k
(s)
1 δ where

k
(s)
1 = 4π

B

ℓ2b

(τ2 − 1)1/2

arctanh(1 − τ−2)1/2
, (7)

ℓb =

(

BR2

Et

)1/4

, τ =
1

4

pR2

(EtB)1/2
. (8)

The length scale ℓb represents the horizontal distance
over which vertical deformations decay without an in-
ternal pressure, while τ gives a dimensionless measure
of the stress within the shell due to this pressure. For
vertical displacements δ ≫ t and strong pressurization,
τ ≫ 1, a boundary layer analysis of eqns (3)-(4) gave [5]

that F = k
(s)
2 δ where

k
(s)
2 = πpR. (9)

The experiments of Lazarus et al. [22] concern the
small deformation behavior (i.e. k1) for ellipsoidal shells
with two out of the three lengths a, b and c set equal
(i.e. ellipsoids of revolution). They considered two cases:
‘indentation at a pole’ and ‘indentation along a merid-
ian’. The case of ‘indentation at a pole’ may be obtained
within our formulation by setting a = b. In this case we
have that Rx = Ry: the shell is locally spherical and the
indentation response is described by the spherical case
recapped above with the radius of curvature R = a2/c.
The remainder of this Letter is concerned with indenta-
tion at points where the two principal radii of curvature
are different, Rx 6= Ry. To simplify our analysis, we be-
gin by considering the case of ellipsoidal shells with zero
internal pressure.
In the limit of unpressurized shells, p = 0, Eqns (3)-(4)

simplify considerably upon linearizing and splitting the
Vlasov operator according to

∇2
k = κM∇2 +∆κ

(

∂2

∂x2
− ∂2

∂y2

)

. (10)
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Here κM ≡ (R−1
x + R−1

y )/2 is the mean curvature and
∆κ ≡ (R−1

x − R−1
y )/2 is a measure of the asphericity

of the shell. Eqns (3)-(4) can be non-dimensionalized
by letting X = x/ℓb, Y = y/ℓb,W = w/ℓb etc., with ℓb
redefined from (8) with R = κ−1

M , F = F × ℓb/B and
Φ = φ× ℓbκM/B. We find that

∇4W +∇2Φ+
∆κ

κM

(

∂2Φ

∂X2
− ∂2Φ

∂Y 2

)

= − F
2π

δ(R)

R
(11)

∇4Φ−∇2W − ∆κ

κM

(

∂2W

∂X2
− ∂2W

∂Y 2

)

= 0 (12)

It is clear from (11)-(12) that in the limit of ǫ ≡
∆κ/κM ≪ 1 we should recover the results previously
found for a spherical shell. This observation suggests
positing series for Φ,W and F in powers of ǫ. The so-
lution of the resulting problem can be found analytically
for the terms up to and including the ǫ2 term [29]. This
analysis shows that F = k1δ with

k1 = (1 − ǫ2/2 + ...)k
(s)
1 (τ = 0), (13)

which agrees well with the results of simulations shown
in fig. 2 for ǫ ≪ 1, as expected. However, we note that
for larger values of ǫ the expression

k1 = (1− ǫ2)1/2k
(s)
1 (τ = 0), (14)

provides an even more satisfactory fit. Furthermore, in
the limit ǫ → ±1 (a cylindrical shell) it is known [14]

that k1 ∼ Et5/2/R3/2 ∼ k
(s)
1 (t/R)1/2 ≪ k

(s)
1 for t/R ≪

1, consistent with the vanishing of k1/k
(s)
1 as ǫ → ±1.

However, we are unable to rationalize this observation
from shallow shell theory; we leave this as a result that
may be of interest to future researchers and shall return
to its geometrical interpretation later.
We now consider the case of pressurized shells for

which the base state prior to the beginning of indentation
is no longer simply a uniform displacement independent
of x and y. At the point (0, 0, c) a pressurized ellipsoid
of revolution has an anisotropic stress state [26] in which

σ0
xx = 1

2pRy, σ0
yy = 1

2pRy

(

2− Ry

Rx

)

. (15)

Because of these two complications, we present here only
the results of numerical simulations. Nevertheless we
use some of the ideas developed in the unpressurized
case to guide our analysis. In particular, we note that
it is natural to use R = κ−1

M as the characteristic ra-
dius of curvature and that shallow shell theory leads
to a term of the form σij∂ijw. Therefore it is natu-
ral to use the isotropic part of the base state stress,
σM = (σ0

xx + σ0
yy)/2 6= p/2κM , in the definition of the

dimensionless pressure τ . We therefore write that

τ =
1

2

σM

(EtBκ2
M )

1/2
=

p

4 (EtB)
1/2

κ2
M

f(κG/κ
2
M ) (16)
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FIG. 2: (Color online) The stiffness of unpressurized ellip-
soidal shells, k1, compared to the stiffness of a sphere with

the same mean curvature κM , k
(s)
1 , plotted as a function of

the asphericity parameter ǫ = (Ry − Rx)/(Rx + Ry). The
asymptotic expression (13) (dashed curve) agrees well with
numerical results for ǫ ≪ 1. However, the fit (14) (solid curve)
gives a good account even for ǫ = O(1). Numerical data were
obtained in simulations with t = 5 mm and b = c = 1 m.

where f(ξ) =
[

2 +
(√

1− ξ − 1
)

/ξ
]

/
(√

1− ξ + 1
)

.
Note that σM = 3p/8κM for a circular cylinder (κG = 0)
and σM = p/2κM for a sphere (κG = κ2

M ). Using this
definition of τ and R = κ−1

M we plot the results of our nu-
merical simulations in Fig. 3. We see that as τ increases
beyond O(1) the results converge to the corresponding
τ ≫ 1 result for a spherical shell, namely

k1 ≃ 4πB

ℓ2b

τ

log 2τ
. (17)

This result generalizes the formula proposed by Lazarus
et al. [22] for moderately elongated ellipsoids. It can also
be compared with previous work aiming at inferring bac-
terial turgor pressure from measurement of k1 by Arnoldi
et al. [15]. Their study built an ab initio model for the
bacterial wall and for rubber ballons inflated by internal
pressure. They assumed that the shape was cylindrical
and, furthermore, that the stress within the shell was
isotropic and equal to the mean value, σM in our no-
tation. Our systematic investigation of the indentation
of pressurized elastic shells using numerical simulations
in ABAQUS supports their assumption that σM is the
appropriate stress scale. However, our theory yields the
correct prefactor 1/ log 2τ and is valid for any dimen-
sionless pressure, as well as for ellipsoidal shells which
are more realistic models of bacterial cells.
We now consider larger indentation depths (δ ≫ t) and

the limit of high pressure (τ ≫ 1). As for small displace-
ments, we seek to rescale the numerically-determined
force-displacement curves onto the theoretical results ob-
tained for a spherical shell in these limits [5]. This anal-
ysis reveals that the best collapse of the numerical data
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FIG. 3: (Color online) The small-deformation stiffness of pres-
surized ellipsoidal shells, k1, as a function of the dimension-
less pressure τ , given in (16). Results are shown for ellip-
soids with t = 0.005, b = c = 1 and a = 0.75, ǫ ≈ 0.28 ( ),
a = 2, ǫ ≈ −0.6 (�) and a = 5, ǫ ≈ −0.92 (H) as well as for
a horizontal cylinder with radius 1, ǫ = −1 (N), which cor-
responds to a = ∞. Here the length scale ℓb is determined
using the mean curvature κM and τ = τ (κM , σM ), as in (16).
The analytic prediction for the corresponding sphere, (7), is
shown by the solid curve. Dashed horizontal lines show the
corresponding value of k1 for p = 0 (see fig. 2).

is obtained by using the typical radius R = κ−1
M with the

lengthscale ℓp = (p/Et)1/2κ
−3/2
M , which emerges from a

balance between in-plane stretching and the geometric
stretching caused by the internal pressure [5, 27]. This
result suggests that large indentations combined with
high pressure leads to an almost isotropic tension within
the shell — the situation resembles the indentation of a
sphere.

In this Letter we have studied the effects of asphericity
on the indentation response of ellipsoidal and cylindrical
elastic shells. In the absence of an internal pressurization,
we found that the indentation force required to produce
a vertical displacement δ is F = k1δ where

k1 = 8 (BEtκG)
1/2

. (18)

We note that in this result it is the Gaussian curvature,
κG = (RxRy)

−1, rather than the mean curvature κM

that provides the relevant length scale. Indeed Gaussian
curvature is associated with in-plane stretching, and so
it is natural that it appears in the quantification of geo-
metric rigiditiy. In the case of highly pressurized shells
τ ≫ 1, however, we found that

F =

{

πf(κG/κ2

M
)

log 2τ pκ−1
M δ, δ ≪ t

πpκ−1
M δ, δ ≫ t

(19)

In this regime, the stiffness can be accounted for simply
by using results from the spherical case together with
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FIG. 4: (Color online) Force-displacement curves at large dis-
placements. The results of ABAQUS simulations are shown
for shells with a = 5 m, κG/κ

2
M = 0.148 (dashed curves), a =

2.5 m, κG/κ
2
M = 0.476 (dash-dotted curves) and a = 1 m,

κG/κ
2
M = 1 (solid curves). The simulated shells have thick-

ness t = 2 mm, b = c = 1 m and a variety of internal pres-
sures: p = 105 Pa (red), p = 106 Pa (green) and p = 107 Pa
(blue). Here κ−1

M is used as the radius of curvature in ℓp.
Numerical (solid black curve) and asymptotic (dotted line)
results for a spherical membrane shell [5] are also shown.

the mean curvature and mean base stress. This conclu-
sion provides strong theoretical support for an assump-
tion made in previous analyses [15, 22] and provides the
necessary theoretical background for the measurement
of turgor pressure in systems better modelled using ellip-
soidal, rather than spherical, shells. Finally, we note that
the internal pressure in cells may be modified by altering
the osmolarity of the external medium [5, 19]. There-
fore, the combination of unpressurized and pressurized
stiffnesses presented here may enable the measurement
of both shell wall modulus and turgor pressure in a wide
range of practical problems.
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