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We show how constraints on the time integrated event rate from a given dark matter (DM)
direct detection experiment can be used to bound the amplitude of the annual modulation signal in
another experiment. The method requires only mild assumptions about the properties of the local
DM distribution: that it is temporally stable on the scale of months and spatially homogeneous on
the ecliptic. We apply the method to the annual modulation signal in DAMA/LIBRA, which we
compare to the bounds derived from XENON10, XENON100, CDMS, and SIMPLE data. Assuming
a DM mass of 10 GeV, we show that under the above assumptions about the DM halo a DM
interpretation of the DAMA/LIBRA signal is excluded for several classes of models: at 6.3σ (4.6σ)
for elastic isospin conserving (violating) spin-independent interactions, and at 4.9σ for elastic spin-
dependent interactions on protons.

Dark matter (DM) constitutes a significant fraction of
the energy density in the universe, ΩDM = 0.229± 0.015
[1]. This conclusion is based entirely on gravitational
effects of DM. A fundamental question is whether DM
interacts also non-gravitationally. Direct detection ex-
periments, for instance, are looking for the scattering of
DM particles from the galactic halo in underground de-
tectors. A characteristic feature of the signal is an an-
nual modulation, because the Earth rotates around the
Sun, while at the same time the Sun moves relative to
the DM halo [2]. At present two experiments are re-
porting annually modulated signals, DAMA/LIBRA [3]
(DAMA for short) and CoGeNT [4], with significances
of 8.9σ and 2.8σ, respectively. Assuming the standard
Maxwellian DM halo and elastic spin-independent DM
scattering both claims are in tension [5, 6] with bounds
on time integrated rates from other experiments such as
XENON10 [7], XENON100 [8], or CDMS [9]. The sit-
uation may change in the case of non-Maxwellian DM
halos, e.g., halos with anisotropic velocity distributions
or with significant substructure, for instance DM streams
or DM debris flows. Recently CDMS provided a direct
bound on the modulation signal, which disfavors the Co-
GeNT modulation without referring to any halo or par-
ticle physics model [10]. Therefore we focus below on
DAMA.

In this Letter we present a general method that avoids
astrophysical uncertainties when comparing putative DM
modulation signals with bounds on time averaged DM
scattering rates from different experiments by combining
the results from [11, 12] with bounds on the modulation
derived by us in [13]. We are then able to translate the
bound on the DM scattering rate in one experiment into a
bound on the annual modulation amplitude in a different
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experiment. The resulting bounds present roughly an
order of magnitude improvement over [11, 12] and [13].

The bounds are (almost completely) astrophysics in-
dependent. Only very mild assumptions about DM halo
properties are used: (i) that it does not change on the
time-scales of months, (ii) that the density of DM in the
halo is constant on the scales of the Earth-Sun distance,
and (iii) that the DM velocity distribution does not vary
strongly on scales of the Earth velocity ve = 29.8 km/s. If
the modulation signal is due to DM, then the modulation
amplitude has to obey the bounds. In the derivation an
expansion in ve over the typical DM velocity ∼ 200 km/s
is used. The validity of the expansion can be checked
experimentally, by searching for the presence of higher
harmonics in the time-stamped DM scattering data [13].
Bounds on the annual modulation. We focus on

elastic scattering of DM χ off a nucleus (A,Z), depositing
the nuclear recoil energy Enr. The differential rate in
events/keV/kg/day is

RA(Enr, t) =
ρχσ

0
A

2mχµ2
χA

F 2
A(Enr) η(vm, t) , (1)

with ρχ the local DM density, σ0
A the total DM–nucleus

scattering cross section at zero momentum transfer, mχ

the DM mass, µχA the DM–nucleus reduced mass, and
FA(Enr) a nuclear form factor. For SI interactions, σ0

A
can be written as σSI

A = σp[Z+(A−Z)(fn/fp)]
2µ2
χA/µ

2
χp,

where σp is the DM–proton cross-section and fn,p are
coupling strengths to neutron and proton, respectively.
Apart from ρχ, the astrophysics enters in Eq. (1) through
the halo integral

η(vm, t) ≡
∫
v>vm

d3v
fdet(v, t)

v
, vm =

√
mAEnr
2µ2

χA

, (2)

where vm is the minimal velocity required for recoil en-
ergy Enr, and fdet(v, t) describes the distribution of
DM particle velocities in the detector rest frame with
fdet(v, t) ≥ 0 and

∫
d3vfdet(v, t) = 1. The integral of
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the velocity distribution enters inRA(Enr, t) because DM
scattering at different angles probes different DM veloci-
ties even for fixed Enr. The velocity distributions in the
rest frames of the detector and the Sun are related by
fdet(v, t) = fsun(v + ve(t)), where ve(t) is the velocity
vector of the Earth. The rotation of the Earth around
the Sun introduces a time dependence in the event rate
through η(vm, t) = η(vm) + δη(vm, t), where

δη(vm, t) = Aη(vm) cos 2π[t− t0(Enr)], (3)

when expanding to first order in ve = 29.8 km/s� vsun '
230 km/s, and Aη(vm) ≥ 0. The expansion can be trun-
cated, if fsun(v) does not show large variations on the
scale of ve, i.e., ve|df(v)/dv| � f(v). We are also as-
suming that the only time dependence comes from the
rotation of the Earth around the Sun and fsun(v) itself
is constant in time and space.

Under those assumptions we have schematically η̄ ∼∫
f(v)/v and Aη ∼ ve

∫
f(v)/v2. After some algebra

the modulation amplitude Aη(vm) can be shown to be
bounded by the unmodulated halo integral η (see [13] for
the derivation):

Aη(vm) ≤ ve
[
− dη

dvm
+
η(vm)

vm
−
∫
vm

dv
η(v)

v2

]
. (4)

If we further assume that the DM velocity distribution
obeys certain symmetry properties such that there is only
one single direction related to the DM flow, independent
of vm (see [13] for details), then one obtains a more strin-
gent constraint:∫ v2

v1

dvmAη(vm) ≤ sinα ve

[
η(v1)− v1

∫
v1

dv
η(v)

v2

]
. (5)

Here α is the angle between the DM flow and the direc-
tion orthogonal to the ecliptic. The most conservative
bound is obtained for sinα = 1 (which would correspond
to a DM stream parallel to the ecliptic). However, in
many cases the DM flow will be aligned with the motion
of the Sun within the galaxy. This holds for any isotropic
velocity distribution and, up to a small correction due to
the peculiar velocity of the Sun, also for tri-axial halos or
a significant contribution from a possible dark-disc. In
this case we have sinα ' 0.5.

In the following we will use time averaged rates from
various experiments to derive an upper bound on η(vm).
In order to be able to apply this information we integrate
Eq. (4) over vm and drop the negative terms in Eqs. (4)
and (5). This gives the bounds∫ v2

v1

dvmAη(vm) ≤ ve
[
η(v1) +

∫ v2

v1

dv
η(v)

v

]
, (6)∫ v2

v1

dvmAη(vm) ≤ sinα ve η(v1) , (7)

In practice the integrals on the l.h.s. are replaced by a
sum over bins. Below we will refer to the relations (6)

and (7) with sinα = 0.5 as the bounds for “general halo”
and “symmetric halo”, respectively. Here “symmetric”
refers to the local velocity distribution according to the
sentence before Eq. (5), not the spatial distribution of
DM.
Bounds on the unmodulated halo integral. Let

us first consider SI scattering with fn = fp. Generaliza-
tion to isospin violating scattering with fn 6= fp and to
SD scattering is straightforward. The predicted number
of events in an interval of observed energies [E1, E2] is

Npred
[E1,E2] = MTA2

∫ ∞
0

dEnrF
2
A(Enr)G[E1,E2](Enr)η̃(vm).

(8)
Here G[E1,E2](Enr) is the detector response function,
which describes the contribution of events with true
nuclear-recoil energy Enr to the observed energy interval
[E1, E2]. It may be non-zero outside the Enr ∈ [E1, E2]
interval due to the finite energy resolution and includes
also (possibly energy dependent) efficiencies. M and T
are the detector mass and exposure time, respectively,
and

η̃ ≡ σpρχ
2mχµ2

χp

η , (9)

where η̃ has units of events/kg/day/keV.
Now we can use the fact that η̃ is a monotonically de-

creasing function of vm [11] (see also [14, 15]). Among all
possible forms for η̃ such that they pass through η̃(vm)
at vm, the minimal number of events is obtained for η̃
constant and equal to η̃(vm) until vm and zero after-
wards. Therefore, for a given vm we have a lower bound

Npred
[E1,E2](vm) ≥ µ(vm) with

µ(vm) = MTA2η̃(vm)

∫ E(vm)

0

dEnrF
2
A(Enr)G[E1,E2](Enr),

(10)
where E(vm) is given in (2). Suppose an experiment
observes Nobs

[E1,E2] events in the interval [E1, E2]. Then

we can obtain an upper bound on η̃ for a fixed vm at
a confidence level CL by requiring that the probability
of obtaining Nobs

[E1,E2] events or less for a Poisson mean

of µ(vm) is equal to 1−CL. Note that this is actually a
lower bound on the CL, since Eq. (10) provides only a
lower bound on the true Poisson mean. For the same
reason we cannot use the commonly applied maximum-
gap method to derive a bound on η̃. If several different
nuclei are present, there will be a corresponding sum in
Eqs. (8) and (10).

The limit on η̃ can then be used in the r.h.s. of Eq. (6)
or (7) to constrain the modulation amplitude. For con-
creteness we first focus on the annual modulation in
DAMA. If mχ is around 10 GeV, then DM particles do
not have enough energy to produce iodine recoils above
the DAMA threshold. We can thus assume that the
DAMA signal is entirely due to the scattering on sodium.
We define Ãη ≡ σpρχ/(2mχµ

2
χp)Aη, which is related to
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the observed modulation amplitude Aobs
i by

Ãobs
η (vim) =

Aobs
i qNa

A2
Na〈F 2

Na〉ifNa
. (11)

Here qNa = dEee/dEnr is the sodium quenching fac-
tor, for which we take qNa = 0.3. The index i labels
energy bins, with vim given by the corresponding en-
ergy bin center using Eq. (2). Further, 〈F 2

Na〉i is the
sodium form factor averaged over the bin width and
fNa = mNa/(mNa + mI) is the sodium mass fraction.
For the modulation amplitude in CoGeNT we proceed
analogously. Note that the conversion factor from η̄ to η̃
is the same as for Aη to Ãη, and is not dependent on the
nucleus. Therefore, the bounds (6) and (7) apply to η̃,

Ãη without change, even if the l.h.s. and r.h.s. refer to
different experiments.

Let us briefly describe the data we use to derive the up-
per bounds on η̃. We consider results from XENON10 [7]
(XE10) and XENON100 [8] (XE100). In both cases we
take into account the energy resolution due to Poisson
fluctuations of single electrons. For XE100 we adopt
the best-fit light-yield efficiency Leff from [8]. The XE10
analysis is based on the so-called S2 ionization signal and
we follow [7] imposing a sharp cut-off of the efficiency
below threshold. From CDMS we use results from a low-
threshold (LT) analysis [9] of Ge data, as well as data on
Si [16]. For SIMPLE [17] we use the observed number of
events and expected background events to calculate the
combined Poisson probability for stage 1 and 2.

For all experiments we use the lower bound on the
expected events, Eq. (10), to calculate the probability of
obtaining less or equal events than observed. For XE100,
CDMS Si, and SIMPLE we just use the total number of
events in the entire reported energy range. For XE10 and
CDMS LT the limit can be improved if data are binned
and the probabilities for each bin are multiplied. This as-
sumes that the bins are statistically independent, which
requires to make bins larger than the energy resolution.
For XE10 we only use two bins. For CDMS LT we com-
bine the 36 bins from Fig. 1 of [9] into 9 bins of 2 keV
where the energy resolution is 0.2 keV.

Results. In Fig. 1 we show the 3σ limits on η̃ com-
pared to the modulation amplitudes Ãη from DAMA and
CoGeNT for a DM mass of 10 GeV. Similar results have
been presented in [14, 15]. The CoGeNT amplitude de-
pends on whether the phase is let to vary freely in the
fit or fixed at June 2nd [6], which applies to the “gen-
eral” and “symmetric” halos, respectively. Already at
this level XE100 is in tension with the modulation from
DAMA (and to some extent also CoGeNT).

We now apply our method. As shown in Fig. 2 the
null results become significantly more constraining after
applying the bound Eq. (6). DAMA and GoGeNT are
strongly excluded by XE100, XE10, CDMS LT already
for the general halo, and even more assuming a symmet-
ric halo. Then also CDMS Si excludes DAMA, and there
is some tension with SIMPLE (not shown). In Fig. 3 we
consider two variations of DM–nucleus interaction. The
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FIG. 1: 3σ upper bounds on η̃. The modulation amplitude
Ãη is shown for DAMA (for qNa = 0.3) and CoGeNT for
both free phase fit (general) and fixing the phase to June
2nd (symmetric). We assume a DM mass of 10 GeV and SI
interactions.
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FIG. 2: Integrated modulation signals,
∫ v2
v1
dvAη̃, from

DAMA and CoGeNT compared to the 3σ upper bounds for
the general halo, Eq. (6). We assume SI interactions and a
DM mass of 10 GeV. The integral runs from v1 = vmin till
v2 = 743 km/s (end of the 12th bin in DAMA).

upper panel is for SD interactions with the proton, where
the bound from SIMPLE is in strong disagreement with
the DAMA modulation, due to the presence of fluorine
in their target. (A comparable limit has been published
recently by PICASSO [18].) In the lower panel of Fig. 3
we show the case of SI isospin violating interactions with
fn/fp = −0.7. This choice evades bounds from Xe, but
now the DAMA modulation is excluded by the bounds
from CDMS Si for the general halo and CDMS Si, LT,
and SIMPLE for the symmetric halo.

Let us now quantify the disagreement between the ob-
served DAMA modulation and the rate from another
null-result experiment using our bounds. We first fix vm.
To each value of η̃(vm) Eq. (10) provides a Poisson mean
µ(vm). We can then calculate the probability pη to ob-
tain equal or less events than measured by the null-result
experiment. Then we construct the bound on the modu-
lation using the same value η̃(vm) on the r.h.s. of Eq. (6)
or (7) (the integrand η̃(v) in Eq. (6) is calculated using
the same pη but with v > vm in Eq. (10)). We calculate
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FIG. 3: Integrated modulation signal
∫ v2
vmin

dvAη̃ from DAMA

compared to the 3σ upper bounds for the general halo, Eq. (6)
(solid), and symmetric halo, Eq. (7) with sinα = 0.5 (dotted).
We assume a DM mass of 10 GeV, and SD interactions on
protons (upper panel) and SI interactions with fn/fp = −0.7
(lower panel).

the probability pA that the bound is not violated by as-
suming on the l.h.s. of Eq. (6) or (7) a Gaussian distribu-
tion for the DAMA modulation signal with the measured
standard deviations in each bin. Then pjoint(η̃) = pηpA
is the combined probability of obtaining the experimen-
tal result for the chosen value of η̃. Then we maximize
pjoint(η̃) with respect to η̃ to obtain the highest possible
joint probability.

The results of such an analysis are shown in Fig. 4. The
analysis is performed at the fixed vm corresponding to the
3rd modulation data point in DAMA, depending on the
DM mass mχ. We find that for all considered interaction
types and mχ . 15 GeV at least one experiment disfavors
a DM interpretation of the DAMA modulation at more
than 4σ even under the very modest assumptions of the
“general halo”. In the case of SI interactions the tension
with XE100 is at more than 6σ for mχ & 8 GeV and
saturates at the significance of the modulation data point
itself at about 6.4σ for mχ & 13 GeV. The exclusion
from XE10 is nearly independent of the DM mass slightly
below 6σ. We show also a few examples of the joint
probability in case of a “symmetric halo”.

As mentioned above, one requirement for our method
to apply is that the DM velocity distribution f(v) is
smooth on scales . ve. Results from N-body simula-
tions [19] indicate that close to the galactic escape ve-
locity vesc ∼ 550 km/s fluctuations at such small scales
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FIG. 4: The probability that the integrated modulation am-
plitude in DAMA (summed starting from the 3rd bin) is com-
patible with the bound derived from the constraints on η̃ for
various experiments as a function of the DM mass. The label
SI (SD), refers to spin-independent (spin-dependent) interac-
tions with fn = fp (fn = 0), and IV refers to isospin-violating
SI interactions with fn/fp = −0.7. For solid and dashed
curves we use the bounds from Eqs. (6) and (7), respectively.

can become significant due to the presence of cold un-
virialized DM streams. Note however, that in all cases
shown above the DAMA modulation signal is excluded
already for vmin well below vesc, where f(v) is expected
to be sufficiently smooth [19]. Furthermore, since O(v2

e)
terms in the expansion of Eq. (1) lead to the appearance
of a [cos(2πt)]2 time dependence, the validity of this ap-
proximation can be checked experimentally by searching
for higher harmonics in the modulation.

While astrophysics uncertainties are avoided, the ob-
tained bounds are still subject to nuclear, particle physics
and experimental uncertainties. For instance, the ten-
sion between the DAMA signal and the bounds depends
on the value of the Na quenching factor qNa, light yield
or ionization yield efficiencies in Xe, upward fluctuations
from below threshold, and so on. For example, if a value
of qNa = 0.45 is adopted instead of the fiducial value of
0.3 consistency for SD and isospin violating interactions
can be achieved in the case of the general halo at around
3σ, while for SI interactions the XE10 bound still implies
tension at more than 5σ for mχ & 10 GeV. Hence, the
precise CL of exclusion may depend on systematic uncer-
tainties. We also stress that the above bounds apply to
elastic scattering only.

In conclusion, we have presented a powerful method
to check the consistency of an annual modulation signal
in a DM direct detection experiment with bounds on the
total DM scattering rate from other experiments, almost
completely independent of astrophysics, for a given type
of DM–nucleus interaction. While our bounds strongly
disfavor a DM interpretation of present annually modu-
lated signals for several models of DM interactions (SI
and SD elastic scattering), the method will be an impor-
tant test that any future modulated signal will have to
pass before a DM interpretation can be accepted.
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