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We have measured the plasma resonances of an array of Josephson junctions in the regime
EJ � EC , up to the ninth harmonic by incorporating it as part of a resonator capacitively coupled
to a coplanar waveguide. From the characteristics of the resonances, we infer the successful im-
plementation of a superinductance, an electrical element with a non-dissipative impedance greater
than the resistance quantum (RQ = h/(2e)2 ' 6.5 kΩ) at microwave frequencies. Such an element
is crucial for preserving the quantum coherence in circuits exploiting large fluctuations of the su-
perconducting phase. Our results show internal losses less than 20 ppm, self-resonant frequencies
greater than 10 GHz, and phase slip rates less than 1 mHz, enabling direct application of such
arrays for quantum information and metrology. Arrays with a loop geometry also demonstrate a
new manifestation of flux quantization in a dispersive analog of the Little-Parks effect.

PACS numbers: 85.25.Cp, 74.81.Fa, 74.50.+r, 64.70.Tg

The emerging field of quantum electronics exploiting
large fluctuations of the superconducting phase is chal-
lenged by the engineering of an electromagnetic environ-
ment which suppresses simultaneously the quantum fluc-
tuations of charge and the random low-frequency fluctua-
tions of offset charges. The small value of the fine struc-
ture constant α = 1/137 entails a fundamental asym-
metry between flux and charge quantum fluctuations,
strongly favoring the latter. To illustrate this, let us
consider the simplest case of a dissipationless LC oscil-
lator, where the charge Q on the capacitor plates and
the generalized flux Φ across the inductor are conjugate
variables. The ratio between quantum fluctuations of
charge, δq = δQ/(2e), and flux, δϕ = δΦ/Φ0, in the
ground state of the oscillator is given by δϕ/δq = Z0/RQ.

Here Z0 =
√
L/C is the characteristic impedance of the

oscillator and RQ = h/(2e)2 = 6.5 kΩ is the supercon-
ducting resistance quantum. Using only geometrical in-
ductors and capacitors, the characteristic impedance of
the oscillator Z0 cannot exceed the vacuum impedance
Zvac =

√
µ0/ε0, thus imposing quantum fluctuations of

charge at least an order of magnitude larger than flux
fluctuations: δq/δϕ > RQ/Zvac = 1/(8α).

On-chip resistors and long chains of Josephson junc-
tions (JJs) in the dissipative regime have already been
used to provide high impedance environments for the
phase across a Josephson element [1–3]. However, these
Ohmic components cannot screen charge offsets effi-
ciently and, being dissipative, tend to destroy the quan-
tum coherence of the devices. We thus need a cir-
cuit element which possesses three key attributes: high
impedance at frequencies of interest, perfect conduction
at DC and extremely low dissipation. These attributes
define the so-called “superinductance” [4, 5].

There are currently two leading candidates for imple-
menting superinductances. The first is superconducting
nanowires [6, 7]. Unfortunately, they appear to show sig-

nificant internal dissipation, which is not yet well under-
stood, and they are challenging to fabricate. The second
implementation exploits the large kinetic inductance of
arrays of JJs. Though amenable to design parameters,
arrays may also suffer from dissipation due to coupling
to internal degrees of freedom [8, 9] or to coupling to
a dissipative external bath [10]. Indeed, transport mea-
surements on large arrays of JJs show the appearance
of a superconducting to insulating transition (SIT) with
decreasing Josephson energy EJ [11–13]. Previous mea-
surements on resonators where the inductive energy is
dominated by JJ arrays have yielded internal quality fac-
tors in the range of a few thousands [14, 15]. The long
lifetime of the fluxonium qubit was the first indirect ev-
idence of a low-loss superinductance based on JJ arrays
[5, 16]. However, this realization suffered from coherent
quantum phase-slips (CQPS) [17, 18], which constitute
additional degrees of freedom, difficult to control experi-
mentally.

In this Letter, we report microwave characterization of
arrays of large JJs (see Fig 1(a)) with Josephson energy
EJw 180EC , where EC = e2/(2CJ) is the charging en-
ergy of one junction. The parasitic capacitance of the
array to ground is such that the CQPS rate is exponen-
tially suppressed with EJ/EC [19].

Our arrays consist of closely spaced Josephson junc-
tions on a C-plane sapphire substrate, as shown in Fig. 1.
We fabricated the junctions by e-beam lithography and
double angle evaporation of aluminum using the bridge-
free technique of [20, 21]. Prior to aluminum deposition,
the substrate is cleaned of resist residues using an oxy-
gen plasma [22]. We minimize the width of the connect-
ing wires between junctions in order to reduce parasitic
capacitances to ground, which ultimately lower the self-
resonant frequency of the superinductance [23].

We characterize our superinductances at low temper-
atures and microwave frequencies by incorporating them
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FIG. 1. (a) Schematic representation of an array of Joseph-
son junctions. Capacitances of islands to ground and across
tunnel junctions are denoted with C0 and CJ , respectively.
The junction inductance is given by LJ . (b) SEM image of
the Josephson junction array fabricated using the bridge-free
technique [20, 21]. (c) Optical image of an LC resonator. The
large pads implement the resonator capacitance as well as cou-
pling capacitances to the CPW feedline. An array of Joseph-
son junctions between the pads implements the superinduc-
tance. The ground plane is patterned with flux-trapping
holes. (d) Low-frequency model for the device shown in (c).
The phase slip element (split diamond) in series with the su-
perinductance represents the collective contribution of phase
slips through all junctions in the array. The characteristic
energy of the phase-slip element is denoted by ES .

in lumped element LC resonators capacitively coupled to
a co-planar waveguide in the hanger geometry. The res-
onator response is measured in transmission. An optical
image of a typical device and its low-frequency circuit
model are shown in Figs. 1(c,d).

The samples were mounted on the mixing chamber
stage (15 mK) of a dilution refrigerator inside a cop-
per box, enclosed in an aluminum-Cryoperm-aluminum
shield with a Cryoperm cap. We used two 4-12 GHz
Pamtech isolators and a 12 GHz K&L multi-section low-
pass filter before the HEMT amplifier, and installed cop-
per powder filters on the input and output lines.

The internal quality factor of a resonator is extracted
by fitting the transmission data about the resonance with
the response function [24]

S21(f) = 1−
Q−1
ext − 2i δffR

Q−1
tot + 2i f−fRfR

, (1)

where Qtot and Qext are the total and external quality
factors, fR is the resonant frequency, and δf character-
izes asymmetry in the transmission response profile. The
internal quality factor is given by Qint = QextQtot

Qext−Qtot . We
show a typical measured response for a resonator with an
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FIG. 2. (a) Typical microwave transmission data for an 80-
junction resonator measured with order one photon circulat-
ing power; solid line is theoretical prediction corresponding to
Qint > 37, 000. Inset: Temperature dependence of the inter-
nal quality factor of the resonator. Dashed line is a guide for
the eye. (b) Same measurement as in (a) for a 160-junction
array loop; solid line corresponds to Qint > 56, 000. Param-
eters for the low-frequency model in Fig. 1(d) are Cc = 1.6
fF, CR = 7.2 fF and LR = 150 nH for (a) and Cc = 1.8 fF,
CR = 11 fF and LR = 76 nH for (b).

80-junction superinductance in Fig. 2(a). This yields an
internal quality factor of 37,000 for the resonator at 15
mK (stage temperature), corresponding to a loss in the
superinductance of better than 27 ppm. We note that an
unknown portion of the internal loss comes from the ca-
pacitors. The inset of Fig. 2(a) shows the dependence of
the internal quality factor on the stage temperature. The
quality factor appears to saturate at low temperatures;
this can either indicate the presence of non-equilibrium
quasiparticles, or more likely the approach of the noise
floor of our measurement setup, limiting the resolvable
values for the Q. A similar resonator with two 80-junction
arrays in parallel was measured to have a quality factor
of 56,000 (Fig. 2(b)), corresponding to a superinductance
loss of smaller than 18 ppm, an order of magnitude below
the previously reported values [14]. The external quality
factors, Qext, of both resonators were 5,000.
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We next evaluate the self-resonant modes of an N -
junction array. The Lagrangian of the array is

L =

N∑
n=1

1

2
C0Φ̇2

n +
1

2
CJ(Φ̇n − Φ̇n+1)2

−1

2

(Φn − Φn+1)2

LJ0
, (2)

where Φn are the node fluxes associated with each su-
perconducting island. We express each node flux as a
superposition of discrete Fourier mode amplitudes,

Φn =
1√
N

N∑
k=1

ei
πk
N nΦk, (3)

which leads to a diagonal Hamiltonian of the following
form:

H =

N/2∑
k=−N/2

C−1
kk′
QkQ−k′ + L−1

kk′
ΦkΦ−k′ . (4)

Here Qk are the canonical conjugate “charge” variables
to the fluxes Φk, and

Ckk′ = δkk′

[
C0

2
+ CJ

(
1− cos

πk

N

)]
; k ∈

[
−N

2
,
N

2

]
(5)

Lkk′ = δkk′
LJ0(

1− cos πkN
) , (6)

are respective capacitance and inductance matrices in the
Fourier basis. This immediately leads to a dispersion
relation of the form,

ωk = (LkkCkk)−1/2 = ω0

√√√√ 1− cos πkN
C0

2CJ
+
(
1− cos πkN

) , (7)

where ω0 = 1/
√
LJCJ is the plasma frequency of a single

junction. The coupling capacitance pads at each end of
the array (see Fig. 1(c)) load down the eigenfrequencies
(see supplementary information for calculation details).

The data presented in Fig. 2 corresponds to measure-
ments of the k = 1 mode. The frequencies of higher
modes, k ≥ 2, of the array lie outside the band of our
measurement setup. In order to observe these modes we
exploit their cross-Kerr interaction, which is induced by
the junction nonlinearity. This interaction leads to a fre-
quency shift of the lowest mode (k = 1) when higher
modes are excited. In Fig. 3(a) we show the results of a
two-tone measurement of an 80-junction resonator (same
device as presented in Fig. 2(a)), where we continuously
monitor the k = 1 mode while sweeping the frequency of
a probe tone. When the probe tone is resonant with a
higher mode of the array, we observe a drop in the k = 1
frequency.
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FIG. 3. (a) Shift of the lowest frequency mode of the 80-
junction resonator upon application of a probe tone. Due
to the weak non-linearity of the array (theory predicts of or-
der 10 MHz/photon [25]), shifts occur when the probe tone
matches a plasmonic resonance of the array (marked with red
arrows). (b) Measured plasma mode frequencies of the 80-
junction array: The blue square represents the fundamental
resonant frequency of the resonator (4.355 GHz), and red cir-
cles indicate the plasma modes pointed out by red arrows
in (a). The black crosses denote the calculated plasma fre-
quencies. The gray curve represents the dispersion relation
without including corrections due to the coupling capacitors
(open boundary conditions), and markers show corresponding
plasma frequencies. The inset in (b) shows the voltage profile
along the array for the first three plasma modes.

Fig. 3(b) shows the comparison between the measured
frequencies of the array modes and the theoretically pre-
dicted values. The black crosses show the renormalized
mode frequencies calculated after incorporation of the
corrections due to coupling capacitance pads (see supple-
mentary information), which are in good agreement with
the measured frequencies represented by colored markers.
The parameters extracted from the fit were C0 = 0.04
fF, CJ = 40 fF and LJ = 1.9 nH, with a confidence
range of 20%. The simulated value of the capacitance
to ground C0 = 0.09 fF agrees within a factor of 2 with
the inferred value from the fit. Room temperature resis-
tance measurements of the junction arrays yield a value
of LJ = 2.1 nH, which agrees with the fit within 10%.
Using the fit parameters we calculate the dispersion rela-
tion for the bare superinductance, shown as a gray curve
in Fig. 3(b). We note that the lowest resonant frequency
of the bare superinductance is 14.2 GHz, which meets the
design criterion of having self-resonances well above the
frequency range of interest (1 - 10 GHz).

In order to characterize the phase slip rate of the su-
perinductances, we monitor the frequency of the k = 1
mode of a resonator formed by two superinductances in
parallel, while sweeping an external magnetic field. As
flux bias is increased, the persistent current induced in
the loop increases, and results in a drop in frequency of
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FIG. 4. (a) Lowest mode frequency versus applied flux bias
for resonator with 160-junction array loop. Flux bias is swept
up (red) and down (blue) over the course of several hours.
Gray curves represent quasi-classical predictions for resonator
frequencies at different integer values of flux quanta in the
array loop. The only adjustable parameter is the number of
junctions, found to be 150± 10. (b) Same measurement as in
(a) over a smaller flux range, but before each measurement
a high power pulse at one of the plasma modes is applied in
order to reset the resonator to the lowest flux state.

the mode (Fig. 4(a)). This behavior can be described
to lowest order in junction nonlinearity by the quasi-
classical expression

f(Φext) =
fR√

1 + 1
2 ( 2π

N (Φext
Φ0
−m))2

, (8)

where Φext is the applied flux bias, and m is the inte-
ger number of flux quanta inside the loop. A phase slip
event is associated with an integer change in m, which
we observe as a jump in resonator frequency. As we in-
crease the flux bias, the phase slip rate is enhanced and
frequency jumps become more probable [19]. We swept
the flux bias applied to the loop over several flux quanta
before a phase slip event occurred. The typical dura-
tion between phase slips recorded in this experiment was
over an hour, Fig. 4(a). This is a remarkably low phase
slip rate of well under 1 mHz for a loop of 160 junc-
tions, significantly lower than previously reported values
on shorter arrays [17, 26].

Due to the extremely low phase slip rate, in order to
measure the resonator in the lowest flux state, we employ
an active resetting scheme. We apply a high power pulse
at one of the k ≥ 2 modes before measuring the location
of the lowest resonant frequency. This high power pulse
activates phase slips, relaxing the loop to the lowest flux
state. Remarkably this allows a change in persistent cur-
rent at constant flux bias. Using this protocol, we tracked
the resonant frequency in the lowest flux state, as shown
in Fig. 4(b), and observed discrete inverted parabolas.
This periodic modulation of the resonator frequency with
flux is akin to the Little Parks effect [27] measured disper-
sively in a non-dissipative regime. We exploit this effect
to unambiguously calibrate the number of flux quanta in
the loop. The fitted value for the total number of junc-
tions differs by 6% from the actual number, which can
be explained by the classical nature of the theory which

does not take quantum fluctuations into account.
In conclusion, microwave measurements of supercon-

ducting Josephson junction arrays demonstrate that su-
perinductances in the range of 100–300 nH, with self-
resonant frequencies above 10 GHz, internal losses less
than 20 ppm, and phase slip rates below 1 mHz can
be successfully implemented. With parameters such as
measured in our experiment, Josephson junction array
superinductances significantly enrich the quantum elec-
tronics toolbox. Applications would include further sup-
pression of offset charges in superconducting qubits [16],
high Q and tunable lumped-element resonators, on-chip
bias tees, and kinetic inductance particle detectors [28].
In addition, these arrays exhibit rich dynamics owing
to many internal degrees of freedom, thus making them
perfect candidates for the study of quantum many-body
phenomena such as quantum impurity models [29, 30],
microwave photonics [31], and measurements of Bloch
oscillations [32].
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