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Abstract 

The strain rate response of flow stress in a plastically deforming crystal is formulated through a 

stress-sensitive dislocation mobility model that can be evaluated by atomistic simulation.  

For the flow stress of a model crystal of bcc Fe containing a ½<111> screw dislocation this 

approach describes naturally a non-Arrhenius up-turn at high strain rate, an experimentally 

established transitional behavior for which the underlying mechanism has not been clarified.  

Implications of our findings regarding the previous explanations of strain rate effects on flow 

stress are discussed. 

 



3 

 

At low temperature, the deformation of metals is largely governed by the thermal 

activation of dislocation glide [1].  Experiments on different structures of metals, including Fe, 

Ta, Cu, Al, and Zn [1-6], indicate the dislocation flow stress varies with strain rate in an 

apparently universal manner. The flow stress increases slowly in an Arrhenius manner at low 

strain rates but turns upward sharply beyond a certain range of strain rate. Although the results 

for different metals can be quantitatively different, the flow stress “up-turn” behavior when the 

strain rate reaches the range of 103-104s-1[6, 7] appears to have a more fundamental origin. The 

onset of non-Arrhenius response has elicited the development of several empirical constitutive 

models [1, 7-14], including the assumption of phonon drag effects to account for the data at high 

strain rates. All existing models to date use adjustable parameters to connect the flow stress 

below and above the critical strain rate for “up-turn”. 

In this letter, we derive a general formalism to describe the flow stress - strain rate 

relation by focusing on the transition time for an activated event that is both thermally and stress 

driven.  We show that the temperature dependence of the transition time is significantly non-

Arrhenius at high strain rates. When applied to predict the dislocation flow stress in single 

crystals, this non-Arrhenius behavior leads naturally to the experimentally observed stress up-

turn at high strain rate, without invoking a different  physical mechanism, or introducing any 

bridging parameters.  

The derivation of the flow stress dependence on the strain rate is described first. In the 

thermal activation regime, a dislocation is located on the bottom of its potential energy valley 

until a thermal fluctuation enables it to climb over the activation barrier to glide to the next 

valley. In general, the activation free energy for dislocation flow is a function of both 
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temperature and stress, represented as ( , ) (1 / ) ( )mQ T T T Eσ σ= −  [15], with mT  being the melting 

temperature and ( )E σ  the glide activation energy at 0 K. Since we will be concerned only with 

the low temperature regime (less than 0.15 mT ), we can take ( , ) ( )Q T Eσ σ≈ . The activation 

energy is known to decrease with applied stress [15-19]. When a strain rate is applied, the system 

begins to deform as time evolves, thus the state of stress becomes time-dependent as does ( )E σ . 

With this in mind and following the transition state theory (TST) [20], we will write for the 

escape rate of a dislocation from the potential energy valley at a certain stress state as 

 
( )

0( ) e B

E
k Tk k

σ

σ
−

= ,                                                                                                  (1) 

where k0 is the attempt frequency. The activation barrier ( )E σ is yet to be specified. In the 

elastic deformation regime, the dependence of stress on applied strain rate as a function of time, 

t, is given by: 

G G tσ ε ε= = ,                                                                                                    (2) 

where G is the shear modulus.  The ε in Eq.(2) represents the elastic strain, because in this letter 

we focus on the initiation of dislocation flow, which pertains to the transition from elastic 

deformation regime to plastic deformation regime. In light of (2), ( )k σ can be represented as a 

function of time, ( )k t .  

The residence probability P(t) that the dislocation does not escape to a neigboring 

potential energy valley during time t (i.e. the  system remains in the elastic deformation regime) 

is defined as [15]: 
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( ) ( ) ( )dP t k t P t
dt

= − ,                                                                                             (3) 

or 

0

1( ) exp[ ( ) ]
t

P t k t dt
C

′ ′= −∫ ,                                                                                    (4) 

where C is the normalization factor. Accordingly, the first-escape probability distribution p(t) is 

given by, 

0

( ) 1( ) ( ) exp[ ( ') ']
tdP tp t k t k t dt

dt C
= − = −∫ .                                                             (5) 

with normalization, 

0 0 0

( ) 1 ( ) exp[ ( ') ']
c ct t t

p t dt C k t k t dt dt= ⇒ = −∫ ∫ ∫ ,                                                        (6) 

where c
ct G

σ
ε

=  represents the maximum residence time, at a given non-zero strain rate ε . The 

average residence time is therefore  

0 0
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In the limit of vanishing ε , ( )k t is a constant, k , and ct → ∞ , Eq.(7) gives the average 

time as 1/t k= , which follows the Arrhenius law. However, for the general condition of non-

zero strain rate, the result of Eq. (7) will deviate from the Arrhenius behavior.  

We stress here that, the derivations of Eq.(1-7) represent a general formalism that is 

applicable to a wide range of systems where the reaction rate is time-dependant. Examples 

include dislocation nucleation under constant strain rate loading, glass transition at different 

cooling rates, as well as dislocation flow. In this work we are particularly interested in predicting 

the variation of flow stress with temperature and strain rate. Since the dislocation will start to 

glide beyond the residence time t , we obtain the flow stress by combining Eq.(2) and Eq.(7),  

0 0

0 0

1( ) exp[ ( ') ']

1( ) exp[ ( ') ']

c

cflow

k k d d
G

G t
k k d d

G

σ σ

σ σ

σ σ − σ σ σ
ε

σ = ε =
σ − σ σ σ

ε

∫ ∫

∫ ∫
.                                                  (8) 

In summary, once the dislocation migration barrier profile ( )E σ  is obtained, the flow 

stress of the corresponding slip system can be calculated according to Eq.(8). There is then only 

one parameter in Eq.(8), the attempt frequency k0, which we take to be on the order of 1012~13 s-1. 

Although Eq.(8) is developed to give the flow stress of a slip system, the formalism is applicable 

in general to any activated process described by Eq.(1).  

The deformation of bcc metals at low temperature is known to be controlled by the 

motion of ½<111> screw dislocations [19], the flow mechanism being 3D kink nucleation and 

propagation [17, 18, 21]. For the purpose of testing Eq.(8), we will examine a short dislocation 

of length 5b, b being the Burger’s vector, which should glide without kink nucleation. We use a 
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simulation cell of 55440 atoms, with the dimensions perpendicular to the dislocation line 

approximately 230Å × 230Å. Periodic boundary conditions are applied on the dislocation line 

and glide directions. The 2D glide motion in this case is frequently studied to infer the behavior 

in 3D [21]. The embedded-atom method-type potential developed by Mendelev et. al. [22] is 

employed. To benchmark the results obtained using Eq. (8), we performed direct molecular 

dynamics (MD) simulations on the same system at the high strain rates where MD is known to 

be valid. The strain rate conditions, 107 and 106 s-1, correspond to steady state dislocation 

velocities of 22 and 2.2 m/s respectively. The simulations show at low T<100K the dislocation 

moved practically in the same {110} plane, while at higher T frequent cross-slips were observed 

and the overall motion was a combination of slips in the {110} and {112} planes. 

The strain-stress curve for our screw dislocation under static conditions is first shown in 

Fig.1 (a). Plastic deformation is seen to set in at  around 1400 MPa, consistent with the known 

Peierls stress values [23]. We then determine the glide barriers for the particular model under 

study using atomistic simulations capable of probing different stress conditions. The nudged 

elastic band (NEB) method [24] is one way to map out  the glide barrier since the initial and final 

states of the transition are known. We will use instead the ABC method [25] which has the 

advantage of not requiring know the final state. At a given stress state, the method induces the 

dislocation to migrate to the adjacent energy valley by a series of activation and relaxation steps.  

As seen in Fig.1 (b), the glide barrier shows a monotonic, though nonlinear, decrease as one may 

generally expect for a stress activated process. This is indeed what is known from a recent study 

of surface dislocation nucleation [15].  To fit the experimental data a commonly used expression 

is ( )0( ) 1 /
qp

cE Eσ σ σ⎡ ⎤= −⎣ ⎦ , where 0E  is the activation barrier under zero stress, cσ  the Peierls 
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stress, and (p,q) are the shape parameters [16-18].  For the stress variation determined here by 

atomistic simulation the fitting parameters have values of p = 0.63, and q =1.41, which give a 

clearly nonlinear behavior for ( )E σ as seen in Fig.1 (b). The dashed line in Fig.1(b), on the other 

hand, denotes the fit with  p=q=1 which is the assumption of a constant activation volume with a 

linear behavior. 

 

Fig.1 (a) Strain-stress curve of the ½<111> screw dislocation in bcc Fe under static conditions. 

The corresponding Peierls stress is about 1400 MPa. (b) Activation barrier for the glide motion of 

½<111> screw dislocation as a function of stress. Blue squares represent the calculated data points by 

ABC method. The red line is a fit to ( )0( ) 1 /
qp

cE Eσ σ σ⎡ ⎤= −⎣ ⎦ with p=0.63 and q=1.41. The dashed 

line represents a constant activation volume scenario with p=1 and q=1. 

 

The activation barrier ( )E σ  is the only input needed to predict through Eq.(8) the 

temperature and strain rate variations of the flow stress, both of which can be directly compared 

against experiments. Fig. 2 shows the thermal behavior of flow stress for strain rates varying 

over 10 orders of magnitude, from 107s-1 down to 10-3 s-1. In the low temperature limit, absence 

of thermal activation, all flow stresses approach the Peierls stress. As temperature increases, all 
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the flow stresses monotonically decrease and approach zero by room temperature.  At a fixed 

temperature, higher strain rate loading results in higher flow stress response.  Thus any attempt 

to compare experimental data against MD simulations must take into account the difference in 

the strain-rate. 

  
                                                          (a) 

 
                                                        (b) 
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Fig.2 (a) The flow stress of the ½<111> screw dislocation under different strain rate and 

temperature conditions. The solid lines show the results calculated according to Eq.(8) with the 

attempt frequency of 1.2*1012s-1. The open squares and triangles represent direct MD simulation 

results at strain rates of 107s-1 and 106s-1, respectively. (b) The relation between strain rate (in 

logarithmic scale) and 1/ T at constant flow stress of 800 MPa and 500 MPa. The dashed lines are 

linear extrapolation from the low strain rate regime.  

 

The symbols in Fig.2 (a) represent the MD results at strain rate of 106s-1 and 107s-1. They 

are in reasonable agreement with the predictions of Eq.(8) using  k0  = 1.2*1012s-1, which 

matches the Debye frequency satisfactorily. This constitutes a self-consistent test of Eq.(8) with 

E(σ) taken from Fig. 1(b) in the range of strain rates where MD is valid.  One can see an 

increasingly sharp drop of flow stress as the strain rate decreases to the range accessible to 

conventional experiments, The sharp drop has been known as a significant feature of the thermal 

activation process; this behavior is not well captured by MD simulations at its characteristic 

strain rates [15, 19]. Fig.2 (a) shows that this behavior is at least qualitatively accounted for by 

the present model.  

To probe further the coupled effect of thermal and stress activation we plot strain rate and 

reciprocal temperature at constant flow stresses in Fig.2 (b), where a linear relation would 

indicate adherence to Arrhenius behavior. Non-Arrhenius behavior is seen to set in at high ε .  

Thus a lower effective barrier at high strain rates is indicated.   

The variation of flow stress with strain rate is of fundamental interest in experimental 

studies of crystal plasticity. Fig.3 (a) shows the predicted behavior based on Fig.2 (a) and Eq.(8). 

Under the limit of infinitely high strain rate, the flow stress approaches the Peierls stress. On the 
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other hand, the flow stress is negatively sensitive to the temperature. In the high temperature 

limit, the flow stress approaches zero regardless of the strain rate. At low ε  the flow stress 

increases only moderately, but as ε  increases, above 100 s-1 at 50 K, and 104s-1 at 100 K, it 

begins to increase much more strongly.   

This up-turn behavior can be analyzed in terms of two factors, stress dependant activation 

volume, and strain rate induced non-Arrhenius behavior. Because of the non-linear stress 

dependence of the activation barrier (Fig.1 (b)), the activation volume is very small at high 

stresses. Such small activation volume leads to a high sensitivity of the flow stress dependence 

on strain rate [15]. In addition, as derived in Eq.(7), there is a non-Arrhenius behavior due to the 

strain rate loading which also contributes to the up-turn in Fig. 3 (a). To decouple the two 

contributions, we remove the non-linearity of ( )E σ  by setting p and q equal to unity (dashed 

line in Fig. 1(b)). Now the only non-linear factor comes from the strain rate induced non-

Arrhenius behavior in Eq.(8).  As shown in Fig.3, under this condition, the flow stress up-turn 

remains, but the stress is now higher beyond the crossover strain rate. Since the assumption of 

p=q=1 results in a higher effective barrier and correspondingly a longer residence time, it follows 

that the flow stress response is higher as well.  Our analysis therefore shows the onset of flow 

stress up-turn is to be attributed mainly to the non-Arrhenius behavior induced by strain rate, as 

described by Eq.(7) and Eq.(8). This result stands in contrast to the previous study of Domain et 

al. [19], which extrapolated the short time-scale simulations to long term behavior by assuming a 

linear relation between flow stress flowσ and logarithm of strain rate, ln ε .  
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                                                                 (a) 

 

                                                                 (b) 
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Fig.3  (a) The predicted relation between flow stress and strain rate at 50 K and 100 K. The solid 

symbols and lines are the calculated results for the ½<111> screw dislocation in bcc Fe with p=0.63 

and q=1.41 in ( )0( ) 1 /
qp

cE Eσ σ σ⎡ ⎤= −⎣ ⎦ . The dashed lines are the results for a hypothetical scenario 

of p=1 and q=1 that corresponds to constant activation volume for the dislocation. (b) Variation of 

reduced flow stress with strain rate at 300 K. The experimental data on copper (blue triangles) and on 

iron (red squares) are adapted from [7] and references therein. The black line represents the results 

calculated by Eq.8, with the activation energy profile input from Gordon et al.’s work in [21] for a 

long screw dislocation in bcc Fe. 

 

To compare the predicted up-turn behavior quantitatively with experimental data, we 

adapt the energy profile ( )E σ  for a longer screw dislocation system in bcc Fe calculated by 

Gordon et al.[21] and use it as input into Eq.(8). Fig.3 (b) shows the variation of flow stress and 

strain rate at 300 K, as observed experimentally and predicted by our model. Since the 

magnitude of flow stress is significantly influenced by the defect microstructures in the 

experimental specimens[7], the quantitative comparison can only be meaningful after appropriate 

normalization, e.g. in a precedent display of the temperature variation of the viscosity of 

supercooled liquids [26]. Therefore, in Fig.3 (b) we show the reduced flow stress, defined as the 

ratio of flow stress to its value at the highest strain rate 107s-1, as a function of strain rate. It is 

seen that both the experiments and our calculation results show a significant flow stress up-turn 

with the critical strain rate in the range of 104-105 s-1. We regard the quantitative agreement with 

experiments to be a test of whether the mechanism of the transitional behavior is described 

correctly. The extent of the agreement suggests Eq.(8) plus E(σ) have essentially captured the 

mechanism for the flow stress up-turn behavior. On the other hand, it is known that the flow 

stress magnitude depends on the local defect microstructure in the material. Experimental 
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specimens have a complex defect microstructure leading to appreciably higher flow stresses (due 

to, for example, dislocation-obstacle interactions) seen in the experiments compared to the 

results in Fig. 3(a). It is therefore intriguing that the reduced flow stress predicted by our model 

in Fig. 3(b) is also quantitatively consistent with experiments from different materials (a ductile 

one, copper, and a brittle one, iron). We attribute this finding to the fact that the energy barrier 

for dislocation to climb/glide over the defects/obstacles in the material bears a similar stress-

activated behavior as the simple dislocation glide represented by the expression 

( )0( ) 1 /
qp

cE Eσ σ σ⎡ ⎤= −⎣ ⎦  that was described above[13]. Thus, Fig. 3(b) demonstrates not only 

the accuracy of our model and the governing mechanism of flow stress up-turn, but also the 

general applicability of this model regarding problems of coupled stress and thermal activated 

processes, beyond simple dislocation glide. 

In this work we present a constitutive model which describes the variation of the plastic flow 

stress with temperature and strain rate.  The model is given by Eq.(8) which involves the 

specification of E(σ), the stress-dependent activation barrier for dislocation mobility.  This is the 

key and the only input needed for the model to predict the temperature and strain-rate behavior 

shown in Fig. 2(a) and Fig.3, respectively, results that are tested against measurements.  We 

show that the coupled effects of thermal and stress activation can be analyzed naturally in the 

framework of transition state theory (for activated state processes).  With respect to the particular 

phenomenon of the flow-stress up-turn (Fig. 3) we provide a parameter-free explanation of the 

transition from thermal- to stress- activation controlled regimes across a critical ε  range that 

matches well with experiments, as an alternative to the interpolative models in the literature [1, 

11, 13]. It would be of considerable interest to test whether this model can also help understand 



15 

 

the yield strength up-turn behavior at high strain rates in glassy solids [27].  Additionally, it is 

also tempting to provide analogies with other crossover phenomena, for example, the variation of 

strain rate with applied stress well known in thermal creep, or the classical variation of viscosity 

with reciprocal temperature in glass transition.   
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