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When an impurity is doped in a solid, it inevitably induces a local stress, tending to 

expand or contract the lattice. Consequently, strain can be applied to change the 

solubility of impurity in a solid. Generally the solubility responds to strain 

“monotonically”, increasing (decreasing) with the tensile (compressive) strain if the 

impurity induces a compressive stress or vice versa. Using first-principles calculations, 

however, we discovered that the H solubility can be enhanced by anisotropic strain in 

some bcc metals, almost independent of the sign of strain. This anomalous behavior is 

found to be caused by a continuous change of H location induced by anisotropic strain. 

Our finding suggests a cascading effect of H bubble formation in bcc metals: the H 

solution leads to H bubble formation that induces anisotropic strain that in turn 

enhances H solubility to further facilitate bubble growth. 
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The solubility of impurity in solids is of not only scientific interest but also 

technological importance [1]. Strain engineering has been recognized to provide an 

effective way to enhance the solubility of impurity in solids, such as doping of 

impurity in semiconductors. In general, the impurity formation energy is a linear 

monotonic function of strain following elasticity theory, no matter a hydrostatic or 

biaxial strain [2, 3]. Thus, one can expect when a “large” impurity induces a 

compressive lattice stress, tending to expand the lattice, its solubility can only be 

enhanced by applying a tensile strain but decreased by a compressive strain; and the 

reverse is true for a “small” impurity. In this Letter, we report the discovery of an 

exceptional case that the H solubility in some bcc metals is found to be enhanced by 

applying both a tensile and compressive anisotropic strain, independent of the sign of 

strain. This surprising counter-intuitive behavior is shown to be caused by an unusual 

strain induced continuous change of H minimum-energy location from one interstitial 

site to another.  

Hydrogen is the most common impurity in metals. Understanding the H solubility 

in metals has broad and significant technological implications. Hydrogen retention 

assists vacancy formation in many metals that degrades their structural properties, a 

phenomenon known as H embrittlement [4-6]. Metal hydrides have been intensively 

studied for H storage [7, 8]. In a fusion reactor, metals are used as the plasma facing 

material (PFM) that is exposed to extremely high fluxes of H isotope 

(deuterium–tritium) ions [9]. The accumulation of H in metals leads to formation of 

voids, bubbles, and blisters [10]. In this regard, our finding suggests a cascading 
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effect of H bubble formation in bcc metals, which has significant implications in 

using bcc metals as PFM. 

We have investigated the effect of strain on H solubility in bcc metals of W, Mo, Fe 

and Cr, using first-principles calculation. Our calculations were performed using the 

pseudopotential plane-wave method as implemented in the VASP code [11, 12] based 

on the density functional theory (DFT). We used the generalized gradient 

approximation of Perdew and Wang [13] and projected augmented wave potentials 

[14], with a plane wave energy cutoff of 350 eV. The bcc supercell of 54 atoms was 

used and its Brillouin zone was sampled with (5×5×5) k-points by the 

Monkhorst-Pack scheme [15]. The energy minimization is continued until the forces 

on all the atoms are converged to less than 310− eVÅ-1. The H solution energy ( solEε ) 

in the strained metal is calculated as 
2,

1
2

sol
H HE E E Eε ε ε= − − , where ,HEε  and Eε  

are total energies with and without H in the supercell, respectively, ε  is the applied 

strain, and 
2HE is the calculated total energy of an H2 molecule (-6.76 eV). This 

corresponds to the binding energy of ~4.53 eV for a H2 molecule, consistent with the 

experiment [16]. Since the H atom is a light-mass particle and therefore has a high 

vibrational energy compared to the relatively slowly moving heavy metal atoms, the 

zero-point energy of H has been taken into account by summing up the zero-point 

vibrational energies of H’s normal modes. For lattice relaxation, under hydrostatic 

strain, the lattice parameter is fixed at given strain values with atomic positions 

relaxed; under anisotropic biaxial strain, the in-plane x and y lattice parameters are 

fixed at given strain values, with the z-lattice parameter relaxed and optimized with 
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all atomic coordinates. 

 

When an H atom is introduced into a bcc metal lattice, it prefers to occupy an 

interstitial site for its small size relative to the host atom. This is confirmed by our 

calculations showing that in all the metals considered the H solution energy is much 

lower at the interstitial sites than at the substitutional site. Thus, below only the 

TABLE 1. H solution energies (in eV) and H-induced lattice stress (in GPa) in bcc 

metals. 

 W Mo Fe Cr 

Solution 

energy 

TIS 1.08 0.78 0.34 0.79 

OIS 1.48 1.03 0.44 0.92 

σ 

TIS-I 
XX=ZZ -0.99 -0.97 -1.25 -1.42 

YY -0.97 -0.86 -1.10 -1.18 

TIS-II 
XX=YY -0.99 -0.97 -1.25 -1.42 

ZZ -0.97 -0.86 -1.10 -1.18 

OIS-I 
XX=YY -0.45 -0.39 -0.91 -0.57 

ZZ -2.21 -2.06 -2.14 -2.88 

OIS-II 
XX -2.21 -2.06 -2.14 -2.88 

YY=ZZ -0.45 -0.39 -0.91 -0.57 

 
FIG. 1 (color online). The interstitial sites in a bcc lattice. (a) TIS-I, (b) TIS-II, (c) 

OIS-I, and (d) OIS-II. The larger blue spheres represent the metal atoms, the smaller 

gray sphere represents the H atom. 
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interstitial sites will be considered. There are two kinds of interstitial sites in a bcc 

lattice, the tetrahedral interstitial site (TIS) and the octahedral interstitial site (OIS), as 

shown in Fig. 1. The TIS has four nearest neighbors (NNs) at 0.559a, where a is the 

lattice constant, and the OIS has six NNs, with two of them located at 0.5a and four at 

0.707a. The calculated H solution energies in the equilibrium lattice are listed in 

Table 1. In all four metals H prefers TIS without strain, in good agreement with 

previous results [17-19]. 

A standard approach to understand the effect of strain on point defect in solid, such 

as H in metal, is by the concept of force dipole tensor [2]. Here, we have calculated 

the H-induced lattice stress tensor, which is equivalent to the force dipole tensor 

differing only by a volume normalization factor. Due to tetragonal lattice symmetry, at 

both the TIS and the OIS, the stress is anisotropic. However, the magnitude of stress 

anisotropy is small at the TIS but very large at the OIS, as shown in Table I. 

The H behavior under strain is then dictated by the H-induced lattice stress tensor, 

i.e., force dipole tensor as demonstrated before [2, 3]. The defect induced lattice stress 

generally has two contributions [2, 3, 20]: the atomic size effect (bond deformation) 

and electronic band effect (Fermi level shift) termed as quantum electronic stress [20]. 

Typically, one assumes the stress tensor is independent of strain. Following linear 

elasticity theory, the H solution energy under strain can be calculated as 

0 [100] [100] [010] [010] [001] [001]( )sol solE E Vε ε σ ε σ ε σ ε== + + + ,         (1) 

where 0
solEε =  is the H solution energy without strain, V is the volume of supercell at 

equilibrium, σ is the H-induced lattice stress in the equilibrium lattice, and ε is the 
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strain. Note that this equation applies to a special case of the force dipole tensor (as 

well as the strain tensor) that is diagonal in the chosen cubic crystal system. In 

applying an isotropic (hydrostatic) strain, [100] [010] [001]ε ε ε= = , one expects a linear 

dependence of H solution on strain with a slope equals to the average stress, 

[100] [010] [001]1/ 3( )σ σ σ σ= + + . This is indeed confirmed by our DFT calculations, 

which show very good agreement between the prediction from Eq. (1) (solid lines), 

using the data of 0
solEε =  and σ in Table 1, and the direct calculations of H solution 

energy under different isotropic strains (data points), as shown in Fig. 2, except at 

large strains where nonlinear effects becomes important. Because the average stress is 

compressive (negative by convention, see Table I), the H solution energy decreases 

“monotonically” in all four metals with the increasing tensile strain but increases with 

 
FIG. 2 (color online). The H solution energy at TIS and OIS as a function of applied 
hydrostatic strain. (a) W. (b) Mo. (c) Fe. (d) Cr. The solid line is the linear elasticity 
model prediction of Eq. (1) using the DFT data of solution energies and stresses 
without strain in Table I. 
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the increasing compressive strain. Also, the TIS remains to be the preferred site under 

all strains. So, overall we may view the results under hydrostatic strain in Fig. 2 as the 

“normal behavior” in accordance with our common expectations [2, 3]. 

Next, we consider the case of applying anisotropic (biaxial) strain. When biaxial 

strain is applied in the x-y plane along the [100] and [010] directions (see Fig. 1), the 

lattice parameter along the z-direction ([001]) is fully relaxed according to Poisson 

ratio (ν). So, the applied strain tensor is [100] [010] [001] /ε ε ε ν= = − , with lattice 

contraction (expansion) in the x-y plane and expansion (contraction) along z-direction. 

From our calculations, we obtain the Poisson ratio 0.29, 0.28, 0.31, and 0.21 for W, 

Mo, Fe, and Cr, respectively. Following Eq. (1), the H solution energy should still 

depends linearly on the strain with a slope of [100] [010] [001]1 / 3( )σ σ σ νσ= + − . The 

calculation results under biaxial strain are presented in Fig. 3. Because the biaxial 

 
FIG. 3 (color online). The solution energy of H in bcc metals (W, Mo, Fe, and Cr) 
under the biaxial strain applied along the [100] and [010] directions. 
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strain breaks the lattice symmetry causing a bcc to body-centered tetragonal (bct) 

structural transformation, here we have to consider two different TIS and OIS 

configurations denoted as TIS-I, TIS-II, OIS-I, and OIS-II, respectively, in Fig. 1. The 

most important observation here is that the linear dependence is followed at all four 

locations only for very small strain but not for large strain. Also, we note that the 

results at the OIS-I have an opposite trend from those at other three sites. This is 

caused by the large stress anisotropy and Poisson effect. When compressive biaxial 

strains are applied in the x-y plane, a tensile uniaxial strain is applied in z-direction by 

Poisson ratio. Note that the stress tensor components switch by symmetry between σyy 

and σzz at the TIS-I and the TIS-II, and between σxx and σzz at the OIS-I and the 

OIS-II, respectively, as shown in Table I. Consequently, the z-component stress is 

much larger than x- and y-component at the OIS-I but not so at the OIS-II (see Table 

I), so that the z-direction effect dominates at the OIS-I to show a net tensile strain 

effect when compressive strain is applied in the x-y plane. (The difference between 

TIS-I and TIS-II is too small to show an effect.) 

Overall, the results at the TIS-II and the two OIS are relatively normal showing a 

monotonic strain dependence of solution energy. Surprisingly, however, the TIS-I 

solution energy (black squares in Fig. 3) shows non-monotonic dependence on strain, 

especially decreasing with the increase of both signs of strain. Thus, for the TIS-I site, 

the standard picture of Eq. (1) with stress (force dipole) tensor [2, 3] fails. Most 

importantly, since the TIS-I remains to be the preferred site with lower energy than 

the TIS-II and the two OIS under strain (see Fig. 3), this unusual TIS-I behavior may 
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dominate the overall stain dependence of H solubility in bcc metals, which cannot be 

simply understood by the standard picture. Practically, it implies that the H solubility 

can be enhanced by applying either a tensile or compressive anisotropic strain! 

To show the above more clearly, we plot in Fig. 4 the change of overall H solution 

energy in the anisotropically strained metal relative to that in the strain-free metal 

( , ,
dif sol sol

H TIS HE E Eε= − ). Except for a small increase (<0.05 eV) in a limited range of 

small compressive strain, the H solution energy decreases over a wide range of strain 

signs and values. This means that the H solubility can be effectively enhanced in all 

the strained bcc metals, almost independent of the sign of strain. 

We now discuss the physical origin underlying the anomalous sign independence of 

H solubility on strain in bcc metals. It is important to realize that the common 

expectation of a monotonic dependence of H solution energy on strain has a 

 
FIG. 4 (color online). Change of H solution energy vs biaxial strain in the bcc 
metals studied. The biaxial strain is applied along the [100] and [010] directions. 
Negative values indicate enhanced H solubility in the strained bcc metals for 
given strain values. 
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prerequisite condition that the stress tensor (or force dipole tensor) [2, 3] is 

independent of strain to guarantee the applicability of Eq. (1). This implies H to stay 

at the same configuration under strain, i.e., neither the site occupation, nor the 

location and nor the lattice displacement field induced by H change appreciably under 

strain. This condition is always satisfied by symmetry constraint when a hydrostatic 

strain is applied, as shown in Fig. 1. When a biaxial strain is applied, however, we 

found that this condition can break down due to the broken symmetry for H at the 

TIS-I. Figure 5 shows the continuous change of H minimum-energy location in W, 

initially placed at the TIS-I, induced by anisotropic strain discovered from our DFT 

calculations. Under compressive biaxial strain the H moves towards the OIS-I site and 

reaches the OIS-I at about -4% strain as seen in Fig. 3(a) beyond which the energy 

curves of the TIS-I and the OIS-I merge together. Under tensile biaxial strain the H 

moves towards the OIS-II site and reaches the OIS-II at about +6% strain as seen in 

Fig. 3(a) beyond which the energy curves of the TIS-I and the OIS-II merge together. 

Therefore, it is such unusual strain induced change of H position that is responsible 

for the observed anomalous non-monotonic dependence of H solution energy on 

strain, leading to the end result of energy decreasing under both signs of strain. 

 
FIG. 5 (color online). The strain induced H position change starting at the TIS-I site. 
Compressive biaxial strain drives the H move towards left to the OIS-I site (left 
panel) and tensile biaxial strain drives the H move towards right to the OIS-II site 
(right panel). 
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Apparently, such strain induced change of microscopic atomic configuration cannot 

be captured by the macroscopic continuum elasticity theory. Similar behaviors of H 

under biaxial strain are also found in other bcc metals of Mo, Fe, and Cr, which leads 

to anomalous non-monotonic strain dependence of H solution energy in all four bcc 

metals studied as shown in Fig. 4. 

We note that the previous work has shown that H in bcc metals can switch from 

TIS to OIS as a function of isotopic mass [21]. Here, we discover a different 

mechanism for H switching from TIS to OIS as a function of anisotropic strain. The 

isotope effect changes the relative stability of TIS versus OIS, and hence the relative 

H population between the two sites. Instead, the anisotropic strain moves the 

minimum-energy H position gradually from TIS to OIS with the increasing strain; at 

the intermediate strain, the minimum-energy position sits in between the TIS and OIS. 

Simple nearest-neighbor H-Metal interaction model [22] may suggest the change of 

relative stability of TIS vs. OIS under anisotropic strain but cannot resolve such a 

complex evolution of potential-energy surface versus strain. 

Our finding indicates that inside a non-uniformly strained bcc metal, H is favored 

to dissolve into either compressive or tensile strained regions except for a small range 

of compressive strain values. This has an important implication in using bcc metals as 

PFM in a nuclear reactor. In particular, W has been considered as the most promising 

PFM, but H blistering in W-PFM seriously influences the plasma stability and limits 

the lifetime of W-PFM. H blistering is also a major concern in the fusion research. As 

such, many studies have been devoted to find ways to suppress H bubble formation in 
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W [23-25]. The internal gas pressure in H bubbles is estimated up to a few tens of 

GPa [26, 27], and thus H bubbles will exert a large strain to the surrounding W lattice, 

so that elastic strain is believed an important factor in affecting the H bubble 

formation [28]. However, the physical mechanism underlying the relationship 

between strain and H bubble formation remains poorly understood, and no 

microscopic insight has been given so far. Here, we propose that there exists a 

strain-triggered cascading effect on H bubble formation in bcc metals: the H solution 

leads to H bubble formation that induces anisotropic strain in the W lattice around the 

bubble, which in turn enhances local H solubility that facilitates further growth of H 

bubble. 

In particular, H bubble is observed to form in the surface regions after W is 

exposed to H plasma irradiation [27, 29], to adopt different size and shape depending 

on the microstructure of W crystal target and the irradiation temperature. Therefore, 

the strain in the W lattice surrounding the H bubble must be highly non-uniform and 

anisotropic due to the low-symmetry surface environment and the irregular size and 

shape of H bubble. According to our study, such anisotropic strain field will drive 

more H atoms to segregate into the vicinity of H bubbles, even independent of the 

sign of strain for most strain values; and the larger the anisotropic strain is, the lower 

the H solution energy will be. The increased H concentration will then facilitate 

further growth of H bubble, and as the bubble grows bigger it induces even larger 

anisotropic strain around it which in turn attracts more H to make the bubble grow 

even bigger, resulting into a cascading effect. 
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