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An open field line plasma is bounded by a chamber wall which intercepts the magnetic field.
Steady state requires an upstream plasma source balancing the particle loss to the boundary. In
cases where the electrons have long mean-free-path, ambipolarity in parallel transport critically
depends on collisionless detrapping of the electrons via wave-particle interaction. The trapped-
electron whistler instability, whose nonlinear saturation produces a spectrum of whistler waves that
is responsible for the electron detrapping flux, is shown to be an unusually robust kinetic instability,
which is essential to the universality of the ambipolar constraint in plasma transport.

PACS numbers: 52.55.Dy,52.25.Fi,52.25.Dg

Ambipolarity is a fundamental plasma physics concept
in which the electrons and ions have the same particle
transport (or loss) rate to a boundary such as the cham-
ber wall in laboratory experiments. It is a robust con-
straint for plasma transport since even a small amount of
net charge can induce an electric field of enormous ampli-
tude. In a magnetized plasma, cross field transport due
to collisional drag between electrons and ions are auto-
matically ambipolar. When plasma flow is present, vis-
cosity can break this intrinsic ambipolarity and a cross-
field electric field is established to modify the plasma
rotation in order to maintain ambipolarity of cross-field
transport [1]. In a tokamak this is known as the neoclas-
sical radial electric field and rotation. With an open mag-
netic field line, which means a field line that intercepts
the boundary, for example the tokamak scrape-off layer
or Hall-effect thrusters [2], one recovers a situation simi-
lar to that of unmagnetized plasmas, where a (pre)sheath
electric field must be present to enforce ambipolarity by
slowing down the electron flow while accelerating the ion
flow to the boundary. The required ambipolar potential
drop from the plasma to the boundary is on the order of
kBTe/e with kB the Boltzmann constant, Te the electron
temperature, and e the elementary charge.

The crucial role of the parallel (pre)sheath electric field
and the transparent physics elucidated by the fluid anal-
ysis date back to Bohm and Langmuir [3, 4]. The sim-
plicity of the fluid argument somewhat obscures the rich
kinetic physics in even the simplest sheath model as for-
mulated by Langmuir, namely cold ions with collisionless
electrons. For example, the presence of near-Maxwellian
electrons as required by the fluid model and sometimes
observed in low temperature experiments, poses a chal-
lenge for theoretical explanation in the name of Lang-
muir paradox [5]. The potential role of collisionless ther-
malisation of the distribution function was recently ar-
gued [6]. In this Letter, we will show that (1) collision-
less detrapping of electrons via wave-particle interaction
is an essential mechanism to ensure ambipolarity in a low-
collisionality plasma; (2) in an open field line plasma, the

trapped-electron population provides a robust drive for
whistler wave instability, with a threshold far lower than
that of the conventional temperature-anisotropy-driven
whistler mode [7, 8]; (3) the prevalence of the trapped
electron whistler mode is crucial to supply the detrapping
flux via wave-particle interaction to ensure ambipolarity
in parallel transport.

The subtle kinetic physics can be demonstrated in the
archetypal example of collisionless electrons and cold ions
where a uniform magnetic field intercepts a perpendic-
ular, absorbing wall. To establish a steady state, the
particle loss to the wall must be replenished by a par-
ticle source upstream. Without loss of generality, the
upstream source draws from a local Maxwellian of fixed
source temperature. The challenge of ambipolarity be-
comes obvious when one recognizes that the (pre)sheath
electric field confines the low energy electrons and sets
up a trap-passing boundary in v‖ (with respect to mag-
netic field). The source electrons, which are assumed to
be drawn from a local Maxwellian, would populate both
the passing and trapped region. In contrast, the ions are
accelerated by the (pre)sheath electric field, so all the
source ions are passing. To maintain ambipolarity, the
source electrons originally in the trapped region (in v‖
space) must find a way to cross the trap-passing bound-
ary. In the absence of collisional detrapping, or with
inadequate collisional detrapping, a collisionless detrap-
ping mechanism must be present otherwise ambipolar-
ity would be violated. The most obvious candidate for
collisionless detrapping is wave-particle interaction. The
primary difficulty, in the simple case of an open field line
plasma, is to identify a robust plasma instability that
would drive plasma waves which efficiently interact with
electrons. The “robustness” of the instability can not
be overemphasized as by the argument given so far, the
requirement of ambipolarity demands an instability at
almost arbitrarily small plasma beta, for example.

Kinetic simulations solving the Vlasov-Maxwell equa-
tions with VPIC [9] clearly indicate the prevalence of
whistler waves propagating along the magnetic field line.
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At frequencies near the electron cyclotron frequency,
these whistler waves are excellent candidates to inter-
act with the electrons producing the required collisionless
detrapping flux. Before evaluating this collisionless de-
trapping flux, we will first elucidate the nature of the ob-
served whistler wave instability. Interestingly, although
parallel transport naturally sets up a plasma temperature
anisotropy [10], which would persist in a low collisionality
plasma, the well-known temperature-anisotropy-driven
whistler wave instability is not the one operating here.
The reason is that the instability threshold is usually not
satisfied in the low-beta open field line plasma.
To see this, we recall the dispersion relation of a

whistler wave propagating along a uniform background
magnetic field B0 = B0ẑ with normal mode ansatz
exp(ikz − iωt) in a plasma of distribution function
fα0(v‖, v⊥) for species α [11],
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where v‖ ≡ v · ẑ, v⊥ = v − v‖ẑ and ωpα,Ωα are the
plasma frequency and cyclotron frequency of species α.
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f0v⊥dv⊥dv‖ the plasma density, the dispersion
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Here A = T⊥/T‖ − 1 is a temperature anisotropy pa-
rameter, Z(ξe) is the usual plasma dispersion function,
ξe = (ω − Ωe)/kvt‖ and the ion contribution has been

dropped since ωpi/ωpe =
√

me/mi ≪ 1. The ω is gener-
ally complex, so ω = ωr + iγ. The instability criteria (for
γ > 0) can be written as [7]

T⊥/T‖ − 1 > (Ωe/ωr − 1)−1 . (4)

This is a concise but less commonly used form in that the
real frequency ωr explicitly enters Eq. (4). The more pop-
ular instability criteria, well-known in the space plasma
physics literature, is expressed in terms of the electron
βe = nTe/B

2 [8]. Previous results have established that
the electromagnetic (whistler) mode becomes stable for
low βe plasma. In our 1-D sheath example, βe ∼ 0.002,
we have observed electromagnetic whistler waves with
ωr ≃ 0.9Ωe, while T⊥ ≃ 6T‖. Therefore, the temperature
anisotropy instability criteria, Eq. (4), is not satisfied.

The actual drive for the observed whistler instability
in the simulation is the trapped electron population. As
noted earlier, in the presence of a (pre)sheath electric
field, the electron distribution has two parts: trapped
distribution, fe

t (|v‖| < vc), and passing electron distri-

butions, fe
p (v‖ > vc), where vc ≡

√

2e|φw|/me is the
trap-passing boundary in v‖, φw is the electrostatic po-
tential difference with the wall. Upon nonlinear satura-
tion, the trapped electron distribution function is depen-
dent on both the source injection (to compensate for the
wall loss by passing electrons) and the velocity space dif-
fusion due to wave-particle interaction. For the whistler
wave stability analysis, the initial trapped-electron distri-
bution, as seen in our simulations, is well approximated
by a Maxwellian distribution with cut-offs in the parallel
velocity at v‖ = ±vc,
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2
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where Θ(1 − v2‖/v
2
c ) is the Heaviside step function that

vanishes when |v‖| > vc, and α(vc) = 2[erf(vc/vt)]
−1 is a

normalization factor so
∫

ftv⊥dv⊥dv‖ = n0. Substituting
the trapped electron distribution function, Eq. (5), into
the dispersion relation, Eq. (1), and ignoring the effect of
passing electrons for now since np/nt ∼ me/mi ≪ 1 [12],
we obtain the dispersion relation for the trapped-electron
whistler mode,
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where v̂‖,⊥,c = v‖,⊥,c/vt, ξ = (ω − Ωe)/kvt, and Θ′(x) =
δ(x) (the dirac-delta function) has been used.

Many physical insights can be obtained from the ana-
lytical solutions of Eq. (6) in two limiting cases. In the
limit of small cutoff speed, vc ≪ vt, which means that
the trapped electrons are cold, we can expand the dis-
persion relation to the first order of |v̂‖/ξ| by assuming
|v̂‖/ξ| ≪ 1, and further take the limit k2c2/ω2 ≫ 1. The
solution becomes

ω = Ωe + iωpee
−v2

c
/2v2

t

vb
c
, (7)

where vb =
√

αvcvt/2
√
π is introduced for simplicity.

The assumption of |v̂‖/ξ| ≪ 1 requires vc ≪ (ωpe/kc)
2vt

which is usually satisfied for short wave length modes.
A finite wave number k will allow particles with almost
zero parallel velocity to release their kinetic energy by
pitch angle scattering in the wave frame. In the oppo-
site limit of a large cutoff speed, vc ≫ vt, so only the
high v‖ tail is removed from the Maxwellian. Before go-
ing into the calculation, we first note that the third term
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in Eq.(6) does not contain a singularity for finite posi-
tive γ. Intuitively, the kinetic energy of particles with
v‖ . vc decreases if they are scattered into the passing
region along the characteristic, (v‖ −ω/k)2+ v2⊥ = const
(constant energy surface in the wave frame), while there
are no counter parts with v‖ > vc in the equilibrium dis-
tribution. Therefore, the wave amplitude increases and
it is reasonable that the most unstable mode satisfies the
resonance condition (ω − Ωe) ≃ kvc. In this limit, the
integration bound in the dispersion relation, Eq.(6), is
extended to infinity. Assuming k2c2/ω2

r ≫ 1, we obtain
approximately the real frequency to be

ωr = Ωe[1− (
vc
c

ωpe

Ωe
)

2

3 ] (8)

for ωr/Ωe ∼ 1, and
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for ωr/Ωe ≪ 1. In both cases, the growth rate is
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where we have assumed γ ≪ |Ωe − ωr| and (Ωe −
ωr)

2ωr/Ωe ≪ ω2
pe for simplicity. For high frequency

whistler wave with ω . Ωe, the unstable mode tends to
have large phase velocity, vp = ω/k = vrω/(Ωe−ω) ≫ vr
with vr being the resonant particle parallel velocity.
This is different from the seminal work by Kennel and
Petschek [7] who considered bi-Maxwellian electrons and
vp ∼ vr. The growth rate given by Eq.(10) for vc ≫ vt is
similar to Eq.(7) for vc ≪ vt, except for a factor of

√
2.

In the last term in the dispersion relation, Eq.(6), both
v̂‖ + ξ and v̂‖ − ξ terms can contribute in the vc ≪ vt
case since the resonance is independent of the particular
parallel velocity, while only the v̂‖ − ξ term contributes
in the vc ≫ vt case since the resonance requires a partic-
ular vr. It is also interesting to note that the imaginary
part of ξ = (ω−Ωe)/kvt dominates in the small vc limit,
while Re(ξ) ≫ Im(ξ) in the large vc limit.

The two limiting results, Eqs. (7,10), show that the
trapped-electron distribution, characterized by a sharp
gradient in v‖ at the trap-passing boundary, is able to
drive whistler wave instability below the electron cy-
clotron frequency for a wide range of vc. The ro-
bust trapped-electron whistler instability is in sharp con-
trast with the temperature anisotropy whistler mode,
Eq.(4), which requires a higher degree of tempera-
ture anisotropy to be unstable for the same frequency
range. To further illustrate the difference between them,
we compare their growth rate and real frequency for
vc = [0.1vt, 2vt]. The numerical solutions of Eqs. (3)
and (6) are shown in Fig. 1, where the most unsta-
ble modes are plotted for both a cutoff Maxwellian

and a bi-Maxwellian with same perpendicular temper-
ature and equivalent parallel temperature, defined as
i.e. T‖ = T⊥

[

1− αv̂cexp(−v̂2c )/
√
π
]

. There are good
agreements between numerical results and the analytical
results in (1) marginal stability boundary for tempera-
ture anisotropy mode, Eq. (4), and (2) the growth rates
and real frequency for trapped-electron mode in both the
small and large vc cutoff, Eqs. (7,8,9,10). Over the en-
tire range of vc = [0.1vt, 2vt], it is clearly shown in Fig. 1
that the growth rate of a cutoff-Maxwellian is larger than
that of a corresponding bi-Maxwellian for different cut-
off speeds. For the low βe plasma as in our simulation
of the 1-D sheath problem, the conventional whistler
mode becomes marginally stable when vc = 0.5vt or
T⊥/T‖ = 6.42, while the trapped-electron driven mode
still has finite growth rate even for vc > 2vt. Here we
have used the parameters in normalized unit (ωpe = 1)
where Ωe = 2

√
2, c = 10vt, so that βe = 0.125%. For

higher βe value, the criteria for temperature anisotropy
driven instability is shifted to a larger vc, i.e. vc ≃ 1.3vt
or T⊥/T‖ ≃ 1.4, as shown in Fig. 1, and there is sub-
stantial increase in the growth rate. [Here, parameters
ωpe = 1, Ωe = 0.25, c = 10vt have been used, so that
βe = 16%.] In contrast, the growth rate of the trapped-
electron driven mode is only slightly changed from the
low beta case. From these analyses, we conclude that
the trapped-electron whistler mode is a robust instability
with respect to the electron beta (βe) and the ambipolar
potential (hence vc/vt).

In the open field line transport problem, the trapped-
electron whistler mode excites whistler waves that pro-
duce detrapping electron flux across the trap-passing
boundary. The ambipolarity of the parallel transport can
only be established in steady state when the statistically
averaged detrapping flux matches the source electron in-
jection rate in the trapped phase space. In other words,
wave-particle interaction via self-excited whistler insta-
bility plays an essential role in maintaining ambipolarity
in the parallel transport of open field line plasmas with
long mean-free-path electrons. This important physics
can be quantified in the 1-D sheath example. In steady
state, the ion flux, Γi, going into the wall is exactly the
same as the injected particle flux. The passing electrons
from the source injection contribute to a wall flux

Γe = [1− erf(
√

e|φw|/Ts)]Γi , (11)

which is obviously less than the ion flux for any fi-
nite value of φw. Here, Ts is the temperature of the
Maxwellian source. A mechanism is required to induce
detrapping electron flux, in order to satisfy ambipolarity.
In short mean-free-path limit , it is Coulomb collision;
in the long mean-free-path limit, the candidate is wave-
particle interaction. The total electron flux from trapped
to passing phase space can be evaluated using the stan-
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FIG. 1: The growth rate (top) and the real frequency
(bottom) of the most unstable mode for both cutoff-
Maxwellian and double-Maxwellian distribution with differ-
ent cutoff parallel velocity vc or equivalent T‖, for βe =
0.125%(solidline) , 16%(dashedline).

dard quasilinear diffusion theory in the literature [13–16],

Γtp =

∫ L

0

n0

vcvt

kc
ωc

[2(1− kcvc
ωc

)g − kcvt
ωc

g′]Akc
dl , (12)

where g(v̂‖) is the saturated local electron distribution
function in v‖ with a normalization of

∫

g(v̂‖)dv̂‖ = 1,
L (kcL ≫ 1) is the total system size, and Akc

=
(Lq2/4πm2)δÊ2

k denotes the perturbation energy density

in k space with δÊk the kth Fourier component of electric
field perturbation. For ω ≤ Ωe, the resonance condition

of electrons with v‖ ≥ 0 requires kc < 0. Therefore, Γtp

is positive when

|g′(v̂c)|/g(v̂c) > 2(ωc/|kc|+ vc)/vt .

Since the instability drive, namely source injection into
the trapped region, always presents, the quasilinear dif-
fusion produces a finite detrapping particle flux. We
take from the simulation (βe = 0.125%), vt =

√
2,

L = 200/
√
2, |kc| ≃ 0.5, ωc ≃ 2.55, |eφw/Ts| ≃ 0.05 (thus

vc ≃ 0.32), and values of n0, g(v̂c), g
′(v̂c), Akc

at seven
different locations, where we have adopted normaliza-
tion to the Debye length and electron plasma frequency,
and used spatial averaging for simplicity. The electron
flux calculated from Eq.(11) is 15% less than the ion
flux; while the estimated quasilinear diffusion induced
flux from Eq.(12) is approximately 19% of Γi, roughly
matching the amount required to satisfy ambipolarity.

The nonlinear saturation of the temperature
anisotropy whistler instability causes robust tem-
perature isotropization on tens of ω−1

pe time scale as
shown by Davidson et al. [17]. Trapped-electron whistler
modes can saturate to a finite level of temperature
anisotropy, at which the electron distribution is locally
smoothed at the trap-passing boundary such that a
sufficiently large gradient of the distribution function
is maintained to provide the required ambipolar de-
trapping flux, Eq. (12). The residual temperature
anisotropy in the nonlinearly saturated steady state can
be substantial. As an application, our kinetic-Maxwell
simulation of a magnetic mirror shows that even with
finite collisionality, the trapped electron distribution can
retain anisotropy. From the perspective of collisional
transport, because the confinement time of plasma in
magnetic mirror is much longer than electron-electron
collision time, the trapped electrons should be equi-
librated into a Maxwellian. However, the collisional
isotropization process is subject to a faster wave-particle
detrapping process at low collisionality. An electron can
be scattered from the trap-zone into the passing-zone
before it suffers significant pitch-angle scattering caused
by Coulomb collision, yet the detrapping process does
not induce energy equipartition between parallel and
perpendicular directions. Therefore, the trapped elec-
trons can maintain a significant temperature anisotropy
even with finite collsionality, which is confirmed by our
kinetic simulations.

In conclusion, we have found that for a broad class
of open field line plasma transport problems with par-
ticle sink at the wall boundary and upstream plasma
source for steady state, the very concept of ambipolar-
ity is intrinsically tied to plasma-wave interaction if the
electrons are of long mean-free-path. This comes about
because the ambipolar electric field, which slows down
electron flow in fluid theory, introduces trap and pass-
ing zones in the electron v‖ space. As long as the up-
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stream plasma source does not populate the passing zone
exclusively, collisionless detrapping via wave-particle in-
teraction plays an essential role in enabling steady-state
ambipolarity. The “universal” requirement of ambipolar
transport demands an unusually robust instability that
interacts strongly with electrons, which we find to be the
trapped-electron driven whistler mode.
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