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Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pres-
sure, they will ultimately buckle. This process can be strongly influenced by structural inhomo-
geneities in the capsule shells. We explore how the time delay before the onset of buckling decreases
as the shells are made more inhomogeneous; this behavior can be quantitatively understood by
coupling shell theory with Darcy’s law. In addition, we show that the shell inhomogeneity can
dramatically change the folding pathway taken by a capsule after it buckles.

PACS numbers: 46.32.+x,46.70.De, 47.55.D-,47.56.+r,47.57.J-,62.20.mq,

Many important natural or technological situations re-
quire understanding thin, spherical shells; examples in-
clude colloidal capsules for chemical encapsulation and
release [1–3], biological cells [4, 5], pollen grains [6], sub-
mersibles [7], chemical storage tanks [8], nuclear contain-
ment shells [8], and even the earth’s crust [9]. In many
cases, the utility of such a shell critically depends on its
response to an externally-imposed pressure. For small
pressures, a homogeneous, spherical shell, characterized
by a uniform thickness, supports a compressive stress,
and it shrinks isotropically. Above a threshold pres-
sure, however, this shrinkage becomes energetically pro-
hibitive; instead, the shell buckles, reducing its volume
by forming a localized indentation at a random position
on its surface. For the case of a homogeneous shell, this
threshold pressure can be calculated using a linearized
analysis of shell theory [10, 11], while the exact morphol-
ogy of the shell after it buckles requires a full nonlin-
ear analysis [12–14]. However, many shells are inhomo-
geneous, characterized by spatially-varying thicknesses
and elastic constants [6, 15–18]. Such inhomogeneities
can strongly influence how a shell buckles [6, 10, 19, 21–
24]. Unfortunately, despite its common occurrence in real
shells, exactly how inhomogeneity influences the onset of
buckling, as well as the shell morphology after buckling,
remains to be elucidated. A deeper understanding re-
quires careful investigations of the buckling of spherical
shells with tunable, well-defined, inhomogeneities.

In this Letter, we use a combination of experiments,
theory, and simulation to study the buckling of spheri-
cal colloidal capsules with inhomogeneous shells of non-
uniform thicknesses. We show that the onset of buckling,
above a threshold external osmotic pressure, is well de-
scribed by shell theory; however, even above this thresh-
old, the capsules do not buckle immediately. We find that
the time delay before the onset of buckling decreases as
the shells are made more inhomogeneous; these dynamics
can be quantitatively understood by coupling shell the-

ory with Darcy’s law for flow through a porous capsule
shell, even for highly inhomogeneous shells. Moreover,
we find that the shell inhomogeneity guides the folding
pathway taken by a capsule during and after buckling.
We use these insights to controllably create novel col-
loidal structures using buckling.

We fabricate monodisperse thin-shelled capsules us-
ing water-in-oil-in-water (W/O/W) droplets prepared by
microfluidics [25, 26]. The inner and outer phases are
a 10 wt % solution of polyvinyl alcohol (PVA) of vis-
cosity µ = 13.5 mPa-s, as measured using a strain-
controlled rheometer, while the middle oil phase is a
photo-polymerizable monomer solution. The PVA so-
lution is less dense than the oil; as a result, after the
droplets are produced and collected, the light inner wa-
ter droplets gradually rise within them. This causes the
oil to gradually thin on the top side of each droplet and
thicken on the bottom [27]. We exploit this effect to pre-
pare capsules, with outer radiusR0, and spatially-varying
shell thickness h(θ) ≈ h0− δcosθ; θ is measured from the
top of the gravitationally-oriented shell, h0 is the average
shell thickness, and δ is the total distance moved by the
inner droplet, as shown schematically in Fig. 1(a). The
shell inhomogeneity can thus be quantified by the ratio
δ/h0. We use UV light to polymerize the oil either as the
capsules are produced in situ, or after different average
waiting times, tw [28]; this enables us to prepare sepa-
rate batches of capsules characterized by varying degrees
of shell inhomogeneity [29, 30]. Some capsules are subse-
quently washed in de-ionized water. The shell is a solid
characterized by a Young’s modulus E ≈ 600 MPa [31];
importantly, while this shell is impermeable to Na+ and
Cl− ions, it is permeable to water [32].

To probe their mechanical response, we subject in-
homogeneous capsules, characterized by tw = 1 min,
δ/h0 ≈ 0.2 and h0/R0 = 0.017, to an external os-
motic pressure by injecting and gently mixing 20µL of
the capsule suspension into a fixed volume of NaCl so-



2

lution, VNaCl ≈ 130 − 400 µL. We investigate the pres-
sure dependence of buckling using NaCl concentrations
in the range 0.063-2.165 M. Estimating the total volume
of the injected capsules using optical microscopy allows
us to calculate the final NaCl concentration of the outer
phase, which then ranges from cNaCl = 0.055− 2.068 M.
These correspond to osmotic pressure differences across
the shell of Π = (2cNaCl + Πout − Πin) × NAkBT =
0.025 − 10.09 MPa, where NA is Avogadro’s constant,
kB is Boltzmann’s constant, T ≈ 300 K, and Πout and
Πin are the measured osmolarities of the fluids outside
and inside the capsules, respectively, in the absence of
NaCl. For each batch of capsules studied, we monitor an
average of 75 capsules over time using optical microscopy.

The osmotic pressure difference across these inhomoge-
neous shells forces the capsules to buckle; we observe the
abrupt formation of localized indentations in the shells,
as shown in Fig. 1(b). For each osmotic pressure in-
vestigated, the fraction of the capsules that buckle in-
creases over time, eventually plateauing, as shown in Fig.
1(c). We quantify this behavior by fitting this increase
to an empirical exponential relationship, exemplified by
the smooth lines in Fig. 1(c). The plateau value of this
function yields a measure of the total fraction of the cap-
sules that ultimately buckle over sufficiently long times,
while the time constant of this function yields a measure
of the time delay before the onset of buckling, τ . For suf-
ficiently large Π, the total fraction of the capsules that
ultimately buckle increases dramatically with increasing
Π, as shown by the grey circles in Fig. 1(d); this indicates
that the capsules buckle above a threshold pressure, Π∗

[33]. We empirically fit these data using the cumulative
distribution function of a normal distribution, shown by
the black line in Fig. 1(d); the mean value and standard
deviation of this fit yield a measure of Π∗ and the spread
in Π∗, respectively.

We study the geometry dependence of Π∗ by per-
forming additional measurements on inhomogeneous cap-
sules, polymerized in situ, with different shell thick-
nesses and radii; these are characterized by δ/h0 ≈ 0.2,
and h0/R0 = 0.019 or h0/R0 = 0.1. Similar to the
h0/R0 = 0.017 case, for sufficiently large Π, the total
fraction of the capsules that ultimately buckle increases
dramatically with increasing Π, as shown by the red tri-
angles and blue squares in Fig. 1(d). Interestingly, we
find that the threshold buckling pressure Π∗ ∼ (h0/R0)

2

[Fig. 1(d), inset]; this observation is reminiscent of the
prediction of shell theory for the buckling of a uniform

shell [11], despite the fact that our capsules are inho-
mogeneous. To understand this behavior, we consider
the local deformability of an inhomogeneous shell at var-
ious points on its surface. Because the 2D stretching and
bending stiffnesses scale as ∼ h and ∼ h3 [34], respec-
tively, the thinnest part of the shell, where h ≈ h0 − δ,
should be the easiest to deform. We directly visualize
that buckling begins at this “weak spot” using confocal
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FIG. 1: (a) Schematic showing the capsule geometry investi-
gated. (b) Upper: buckling of a capsule; scale bar is 20µm.
Lower: buckling begins at the thinnest part of the shell for
capsules with thickness inhomogeneity δ/h0 ≈ 0.84; scale bars
are 50µm. (c) Fraction of capsules buckled over time, for three
different osmotic pressures Π. Capsules have mean shell thick-
ness h0 = 1.2µm, outer radius R0 = 70µm, and δ/h0 = 0.20.
Smooth lines show exponential fits. (d) Total fraction of cap-
sules that ultimately buckle over time for varying Π, for cap-
sules with h0, R0, and δ/h0 = 1.2µm, 70µm, and 0.20 (grey
circles), 1.3µm, 67µm, and 0.23 (red triangles), and 5.5µm,
55µm, and 0.19 (blue squares). Smooth curves are fits to the
data using the cumulative distribution function of the normal
distribution. Inset shows mean osmotic pressure of each fit
versus h0/R0; vertical and horizontal error bars show stan-
dard deviation of each fit and estimated variation in h0/R0,
respectively. Straight line shows (h0/R0)

2 scaling. (e) Time
delay before the onset of buckling, τ , normalized by h2

0, for
varying Π, for the same capsules as in (d). Filled points show
Π > Π∗ while open points show Π < Π∗. Vertical error
bars show uncertainty arising from estimated variation in h0.
Black line shows Π−1 scaling. (f) Time delay τ decreases with
the wait time before a shell is polymerized, tw; capsules have
h0 = 1.2µm and R0 = 70µm, and are buckled at Π ≈ 0.86
MPa > Π∗. Black line shows theoretical prediction coupling
shell theory and Darcy’s law, as described in the text, with
k ≈ 3.5 × 10−24 m2.

microscopy of inhomogeneous capsules with fluorescent
shells characterized by δ/h0 ≈ 0.84 [Fig. 1(b), lower
panel]. Consequently, we expect the onset of buckling
to be governed by deformations in this part of the shell.
To quantify this expectation, we apply shell theory to an
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inhomogeneous shell characterized by the same geome-
try as the experimental capsules [26]; this analysis yields

Π∗ = 2E√
3(1−ν2)

(

h0−δ

R0

)2

≈ 470(h0/R0)
2 MPa, assum-

ing a Poisson ratio ν ≈ 1/3. The dependence of Π∗ on
h0 − δ confirms our expectation that the threshold buck-
ling pressure is set by the thinnest part of the inhomoge-
neous shell. Moreover, we find Π∗(R0/h0)

2 ≈ 600 ± 200
MPa for the experimental capsules [solid line, Fig. 1(d)
inset], in good agreement with our theoretical prediction.
This indicates that the onset of capsule buckling is well
described by shell theory.
Within this framework, for Π > Π∗, a capsule remains

spherical before it buckles; it initially responds to the
applied pressure by contracting uniformly, reducing its
volume from its initial value, V0, by a threshold amount
∆V ∗, before buckling. We find that the time delay be-
fore the onset of buckling, τ , strongly decreases with in-
creasing osmotic pressure Π > Π∗, as shown by the filled
points in Fig. 1(e). We hypothesize that this behavior
reflects the dynamics of the fluid flow through the capsule
shell; for the capsule to buckle, a volume ∆V ∗ of fluid
must be ejected from its interior. The time delay can
then be estimated as τ = ∆V ∗/Q [35], where both ∆V ∗

and Q, the volumetric rate of fluid ejection from the cap-
sule interior, are functions of δ/h0. We calculate ∆V ∗ for
inhomogeneous shells using shell theory and validate the
calculations with numerical simulations; the fluid ejec-
tion rate Q follows from integrating Darcy’s law over the
surface of the capsule geometry shown in Fig. 1(a) [26].
Combining these results, we obtain

τ ≈
V0

Q0

√

3(1− ν)

1 + ν

h0

R0

(

1−
δ

h0

)2

(1)

where Q0 ≡ 4πR2
0Πk/µh0 and k is the shell permeabil-

ity. For the inhomogeneous capsules, characterized by
δ/h0 ≈ 0.2, we thus expect τ/h2

0 ≈ 0.8µ/kΠ; our experi-
mental measurements of τ allow a direct test of this pre-
diction. Above Π∗, the data collapse when τ is rescaled
by h2

0, as shown by the filled points in Fig. 1(e), con-
sistent with our expectation; moreover, by fitting these
data [black line in Fig. 1(d)], we obtain an estimate for
the shell permeability, k ≈ 7 × 10−24 m2. We use opti-
cal microscopy to directly measure the rate at which the
capsule volume decreases immediately after the onset of
buckling [26]; this gives an independent measure of the
shell permeability. We find k ≈ 2 × 10−24 m2 [Fig. S8],
in good agreement with the fit shown in Fig. 1(e); this
further confirms the validity of Eq. 1.
To test the applicability of this picture to even more

inhomogeneous capsules, we measure τ for capsules poly-
merized at different tw; these have shells with h0/R0 =
0.017 and δ/h0 ranging from 0.2 up to 0.84. We impose a
fixed osmotic pressure Π ≈ 0.86 MPa > Π∗. We observe
that τ decreases only slightly with increasing tw < 103

s; however, as tw is increased above this value, τ drops
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FIG. 2: Folding pathways for different shell inhomogeneities.
(a-c) Optical microscope images exemplifying buckling at
Π ≈ 0.86 MPa of (a) slightly inhomogeneous capsules poly-
merized in situ (tw ≈ 0), with δ/h0 ≈ 0.2, (b-c) very in-
homogeneous capsules polymerized after a wait time tw = 1
day, with δ/h0 ≈ 0.84. Very inhomogeneous capsules buckle
through the formation of either (b) one single indentation or
(c) two indentations. ∆t is time elapsed after buckling. Scale
bars are 35µm. (d-e) Examples of simulated shells with sim-
ilar geometries as the capsules shown in (a-c), for varying
fractional volume reduction ∆V/V0. Color scale indicates the
spatially-varying shell thickness.

precipitously over one order of magnitude, as shown by
the points in Fig. 1(f). To quantitatively compare these
data to Eq. (1), we estimate the dependence of δ/h0 on
tw using lubrication theory; we validate this calculation
using direct measurements of δ/h0 for capsules prepared
at varying tw [26, 36]. Remarkably, we find good agree-
ment between our data and Eq. (1), with k ≈ 3.5×10−24

m2, as shown by the black line in Fig. 1(f); in particular,
this simple picture captures the strong decease in τ at
tw ∼ 103s, with a shell permeability consistent with our
independent measurements [Fig. S8]. While these results
do not rule out other possible functional forms of τ , they
further suggest that the time delay before the onset of
buckling can be understood by combining shell theory
with Darcy’s law for flow through the capsule shell, even
for very inhomogeneous shells.

The shell thickness inhomogeneity may continue to
guide the development of deformations in a capsule af-
ter it buckles. To explore this possibility, we use opti-
cal microscopy to monitor the evolution of the capsule
morphologies after the onset of buckling. Slightly inho-
mogeneous capsules typically buckle through the sudden
formation of a single circular indentation. As this inden-
tation grows over time, its perimeter eventually sharpens
into straight ridges connected by 2-3 vertices [14, 19, 20];
this folding pathway is exemplified by capsules polymer-
ized in situ, characterized by δ/h0 ≈ 0.2, as shown in Fig.
2(a). This sharpening reflects the unique physics of thin
shells: because it is more difficult to compress the capsule
shell than it is to bend it, localizing compressive defor-
mations only along sharp lines and points on the capsule
surface requires less energy than uniformly compressing
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FIG. 3: Colloidal capsules with two or three spherical in-
terior compartments, schematized in left panels, buckle at
“weak spots” (arrows). This forms shapes with two or three
equally-spaced circular indentations after buckling (right pan-
els). Scale bars are 100µm.

the shell [37]. Interesting differences arise for very inho-
mogeneous capsules polymerized after tw = 1 day, char-
acterized by δ/h0 ≈ 0.84. The initial folding pathway
is similar; however, the perimeters of the indentations
formed in these capsules sharpen into straight ridges con-
nected by 4-5 vertices, more than in the slightly inhomo-
geneous case, as shown in Fig. 2(b). Moreover, surpris-
ingly, roughly 30% of the very inhomogeneous capsules
begin to buckle through the formation of one, then two,
adjacent indentations, as exemplified in Fig. 2(c). The
perimeters of these indentations grow over time, even-
tually meeting, coalescing, and sharpening into straight
ridges connected by 4-5 vertices [Fig. 2(c)]. These obser-
vations directly demonstrate that the deformations of a
capsule after it buckles are sensitive to the shell inhomo-
geneity.
To gain insight into this behavior, we perform numeri-

cal simulations of two different shells, a slightly inhomo-
geneous shell with δ/h0 = 0.20, and a very inhomoge-
neous shell with δ/h0 = 0.82, similar to the experimental
capsules. As the shell volume is reduced below V0−∆V ∗,
both shells buckle through the formation of a single in-
dentation centered at the thinnest part of the shell, as
shown in the leftmost panels of Fig. 2(d-e). As ∆V
increases, this indentation grows and its edges sharpen.
We find that the indentations formed in the very inhomo-
geneous shells begin to sharpen at smaller ∆V/V0, and
ultimately develop more vertices than those formed in
more homogeneous shells [Fig. 2(d-e)] [26]. These re-
sults qualitatively agree with our experimental observa-
tions [Fig. 2(a-c)], further confirming that after the onset
of buckling, the folding pathway of a shell depends on the
inhomogeneity. However, in contrast to the experimental
capsules [Fig. 2(c)], we do not systematically observe the
formation of adjacent indentations in the simulations on
very inhomogeneous shells [38]. This presents a puzzle
requiring further inquiry.
Our capsules may be used to guide colloidal self-

assembly; for example, a colloidal particle can sponta-
neously bind to the indentation formed during buckling
through a lock-and-key mechanism [39]. This mecha-
nism is typically applied to a homogeneous colloidal
particle, which buckles through the formation of a single
indentation at a random position on its surface. We
apply our findings to create multiply-indented capsules

having two-fold or three-fold symmetry. To do this, we
form double emulsions with two or three inner droplets
of radii larger than half the radius of the outer droplet.
Consequently, the inner droplets pack closely to form
dimers or trimers [40], as shown schematically in Fig.
3. The double emulsions are then polymerized, forming
solid capsules with two or three spherical compartments
in their interiors, and two or three equally-spaced “weak
spots” in the capsule shell [arrows in Fig. 3]. When
exposed to a sufficiently large osmotic pressure, these
capsules buckle through the formation of multiple,
equally-spaced indentations at the weak spots, as shown
in Fig. 3. This approach is thus a versatile way to create
capsules of desired symmetries, and extends the range
of structures that can be used for lock-and-key colloidal
assembly.
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