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We realize and study an attractively interacting two-dimensional Fermi liquid. Using momentum-
resolved photoemission spectroscopy we measure the self-energy, determine the contact parameter
of the short-range interaction potential, and find their dependence on the interaction strength. We
successfully compare the measurements to a theoretical analysis taking properly into account finite
temperature, the harmonic trap, and the averaging over several two-dimensional gases with different
peak densities.
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Atomic quantum gases have been proposed as quan-
tum simulators to identify the microscopic origin of con-
densed matter phenomena which have been pondered for
decades. One such phenomenon is the Fermi liquid [1],
that has been the cornerstone of the description of solids
for the last fifty years. The underlying concept of this
remarkable theory is that, although the basic quantum
particles can be strongly interacting, there are some exci-
tations – named Landau quasiparticles – which are essen-
tially non-interacting. These excitations have the same
quantum numbers (charge and spin) as the original par-
ticles, but their dynamical properties can be significantly
different. The quasiparticle dynamics is described by a
fundamental function called the self-energy, whose real
and imaginary parts encode information about the quasi-
particle dispersion and decay, respectively. In general,
this function has a rich structure representing the vari-
ety of single-particle excitations as a function of momen-
tum and energy. In the low-energy and low-temperature
regime, the self-energy reduces to essentially two num-
bers: the quasiparticle effective mass and the life-time.
For interacting Fermi gases, the quasiparticle picture al-
lows therefore to summarize the effects of all interactions
in the redefinition of these two parameters and to treat
the interacting quantum system as a free-fermion gas of
quasiparticles. This constitutes an immense simplifica-
tion over a fully interacting quantum system and has of-
ten been the starting point to understand more complex
phenomena such as semiconductors and the transistor, su-
perconductivity and the BCS theory, and, more recently,
the giant magnetoresistance.

Initial experimental verifications of Fermi liquid the-
ory were quite indirect and mostly based on collective
mode propagation and transport measurements, for ex-
ample in simple metals, heavy-fermion materials (CeAl3,
LaRu2Si2), and liquid 3He. Only in recent years the An-
gle Resolved Photoemission Spectroscopy (ARPES) tech-
nique has allowed for a direct measurement for the prob-
ability to find a single-particle excitation with a given
momentum and energy – the so-called spectral function
[2]. It has therefore been instrumental in providing a

direct measure for the existence and properties of quasi-
particles. However, the analysis of APRES spectra and a
detailed comparison with the theory remains difficult in
solid-state systems, due to non-trivial interactions in the
final state, and insufficient knowledge of the dispersion
even for the non-interacting particles. The clean Fermi
liquid system of 3He does not easily lend itself to the
equivalent of an ARPES measurement.

Experiments with cold atomic gases provide a remark-
able alternative to tackle the question of interactions
in quantum fluids. These systems have the advantage
of combining short range interactions with an unprece-
dented control of the interaction strength. They also
offer control of the dimensionality of the system, and in
particular have allowed the realization of interacting two-
dimensional fermionic systems [3–6]. It was thus natu-
ral to develop the equivalent of the ARPES technique
for cold atoms to probe the quasiparticle dynamics and
the characteristics and properties of the Fermi liquid [7].
However, despite successes in realizing ARPES experi-
ments [5, 8, 9] and probing the formation of a gap for
attractive interactions, no comparison with the proper-
ties of two-dimensional Fermi liquids has yet been made.
Some aspects of Fermi liquid properties in cold gases have
so far been probed only in three dimensions [10, 11] by
studying the magnetic susceptibility in the strongly in-
teracting regime above Tc.

Here, using momentum-resolved radiofrequency (r.f.)
spectroscopy [5, 7–9], we extract the self-energy of a two-
dimensional Fermi gas with attractive interactions. We
find quantitative agreement with calculations based on
Fermi liquid theory. Moreover, we show that the Hartree
energy term can play a dominant role in the quantitative
understanding of ARPES spectra in harmonically con-
fined Fermi gases.

We prepare a quantum degenerate Fermi gas of 40K
atoms in the |F = 9/2,mF = −9/2〉 ≡ | − 9/2〉 and
|F = 9/2,mF = −7/2〉 ≡ | − 7/2〉 hyperfine states
in a one-dimensional optical lattice of wavelength λ =
1064nm, populating a stack of approximately 40 indi-
vidual two-dimensional quantum gases [3]. In the cen-
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FIG. 1. (Color online) Momentum-resolved photoemission
signal in experiment and theory. a) Measured signal at
1/ ln(kFa2D) = 0.35. A free particle would correspond to
a straight horizontal line. b) Energy distribution curves at
different momenta ~k. The solid lines represent a fit to the
data. We see a shift of the maximum towards lower energies
which indicates the effective mass of the quasi particles. The
dashed line indicates E0, the position of the peak at k = 0.
c) and d) Calculated intensity and energy distribution curves
for the same parameters as in the experiment.

tral layers we confine a few thousand atoms per two-
dimensional gas. The radial confinement of the two-
dimensional gases is harmonic with a trap frequency
of ωr = 2π × 127Hz and the axial trap frequency is
ωz = 2π × 75 kHz. After we ramp to the desired mag-
netic field value near the Feshbach resonance between
the | − 9/2〉 and | − 7/2〉 states, we perform momentum-
resolved radiofrequency spectroscopy between the |−7/2〉
and |F = 9/2,mF = −5/2〉 ≡ | − 5/2〉 states [5, 9]. To
this end, we apply a radio frequency (r.f.) pulse of ap-
proximately Ωr.f. = 47MHz with a Gaussian amplitude
envelope with a full width at half maximum of 280µs. Af-
ter a further 100µs we turn off the optical lattice, switch
off the magnetic field and separate the three spin com-
ponents by applying a magnetic field gradient. After a
free expansion of the gas of 12ms we take an absorp-
tion image and average the density distribution of the
| − 5/2〉 component azimuthally to obtain the density

n(ν, k =
√

k2x + k2y), where we have taken the energy zero

at the Zeeman energy EZ(B) of the spin-flip transition
in vacuum, i.e., ν = EZ(B)/h− Ωr.f..

The parameter g characterizing the interaction
strength of a two-dimensional Fermi liquid is given by
g = −2π~2/[m ln(kF a2D)] [12]. Here, EF is the Fermi

energy, kF is the Fermi wave vector, and a2D is the
two-dimensional scattering length defined via the bind-
ing energy of the confinement-induced bound state EB =
~
2/ma22D. On the attractive side of a Feshbach resonance

EB becomes exponentially small, justifying the role of g
as a small parameter. We consider the weakly interacting
regime 0 ≤ 1/ ln(kFa2D) < 1 and study it in the normal
state where the thermal energy kBT is much larger than
the energy scale for pairing. This realizes a Fermi liq-
uid state without complications of (pseudogap) pairing.
In Fig. 1a we show a momentum-resolved photoemission
signal for 1/ ln(kF a2D) = 0.35 at T/TF = 0.27, where the
free-particle dispersion has been implicitly subtracted.
Here, T is the temperature and TF = EF /kB. Figure
1b shows the corresponding energy distribution curves
(EDC) for different values of the wave vector k. In order
to take into account the slightly asymmetric shape of the
peak, we use a combination of a Gaussian and a modified
Gumbel distribution to fit the energy distribution curves
[5], which we find to capture the feature very well for all
data sets taken. We compare our experimental data to
a theoretical calculation using the ladder approximation
[13] parameterized by the bound-state energy EB, which
takes the experimental conditions, such as inhomogeneity
due to the trap and finite temperature, fully into account
(see Supplementary Material). Our theoretical modeling
improves over previous work, which has focussed on ho-
mogeneous Fermi liquids at zero temperature with repul-
sive [12, 13] and attractive [14–16] interactions, as well as
on repulsive interactions at finite temperature [17]. The
result of our calculation for 1/ ln(kF a2D) = 0.35 is dis-
played in Fig. 1c and d. An energy-resolution broadening
of 1.5 kHz was applied to the theoretical data, which is
experimentally measured for the non-interacting gas and
which corresponds to the Fourier-limited width of the r.f.
pulse. For the interacting gas, we experimentally observe
a larger width, which is not capture by theory, and which
therefore possibly stems from final state interactions.
We analyze the dispersion of the peak in Fig. 1 by

means of two parameters, which are the k = 0 inter-
cept E0, and the curvature represented by an effective-
mass parameter m∗, according to Emax(k) = E0 +
~
2k2

2

(

1
m∗

− 1
m

)

. In Fig. 2 we show the effective mass
parameter for different values of 1/ ln(kFa2D) at T/TF =
0.27. For zero interaction (g = 0), m∗ equals the free-
particle mass to within 1% and E0 = −1.0(0.3)kHz. This
data point calibrates our weak final state interactions. In-
creasing the interaction strength on the attractive side of
the Feshbach resonance leads to an increase of m∗ as the
dressing of the bare fermions increases. Experimentally,
E0 does not show a significant variation over this range.
Our experimental results and theoretical calculations

display very good agreement with each other (see Fig. 2).
The solid blue line shows the theoreticalm∗/m for the ex-
perimental Fermi energy and temperature and averaged
over a distribution of 2D gases with a Gaussian envelope
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FIG. 2. (Color online) Dependence of the effective mass pa-
rameter on the interaction parameter 1/ ln(kFa2D). The blue
solid line shows the numerical calculation of the trap average
and averaging over a density distribution with an rms width
of 46 layers for the experimental conditions. The red dashed
curve is the trap average for the central layer only. The green
solid curve includes only the Hartree term in the self energy.

of Fermi energies with a r.m.s. width of 46 layers. The
dashed red line shows the result for the trap average of
the center layer only, indicating that the averaging over
several layers only has a very minor effect. When only
the first-order Hartree term in the self-energy, which is a
density-dependent shift without dynamical consequences,
is taken into account (green curve in Fig. 2), one nev-
ertheless obtains a non-linear contribution to the disper-
sion, which is a result of the inhomogeneity of the system.
This shows that the Hartree term [18–20] plays an impor-
tant role in the quantitative interpretation of momentum-
resolved r.f. spectra in confined geometries. The higher-
order dynamical corrections reduce the dispersion asso-
ciated with the Hartree term. For 1/ ln(kFa2D) < 0.4,
the effect of these corrections is at the limit of the ex-
perimental error bars. In order to study the tempera-
ture dependence of the Fermi liquid properties, we vary
the temperature at approximately constant 1/ ln(kF a2D).
We observe that m∗ decreases with increasing tempera-
ture and approaches the bare particle mass m∗/m ≈ 1 at
approximately T = TF (see Figure 3), which agrees very
well with theory.

Finally, we turn our attention to the contact parameter
C [21–26]. The contact is determined by the two-particle
correlation function between atoms of opposite spin at

short distance g
(2)
↑↓ (|r↑ − r↓|), and it governs the momen-

tum distribution of a gas at large momenta according to
n(k) ∼ C/k4 for k ≫ kF . Through the universal Tan re-
lations [21], the contact parameter provides an important
link between the microscopic physics of the short-range
atom-atom interactions and thermodynamic quantities.
In three dimensions, the contact has been measured from
photoemission spectra [24] and Bragg scattering [25], and
Tan’s relations have been experimentally verified. In two
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FIG. 3. (Color online) Temperature dependence of the
effective mass parameter. For our lowest temperature
T/TF = 0.27 this corresponds to an interaction strength of
1/ ln(kFa2D) = 0.35; samples at higher temperature contain
more atoms and have a slightly larger Fermi energy, which
decreases the coupling strength to 1/ ln(kF a2D) = 0.32 at
T/TF = 1.09. The lines show the numerical simulation for the
experimental parameters. The blue line is the trap average
over 46 layers corresponding to the experimental conditions.
The red dashed curve is the trap average for the central layer
only. The green line includes the Hartree term only in the
self energy. The difference between Hartree-only and the full
self-energy changes with the number of trapped atoms, show-
ing the intricate relation between the Hartree energy and the
effective mass parameter.

dimensions, Tan’s relations have to be refined, and the
spectral line shape of r.f. spectra receives non-trivial cor-
rections [26].
The dimensionless contact parameter C′ = C/k2F

can be measured from the high-frequency tail of the
momentum-integrated single-particle spectral function
[27]. In two dimensions, the spectral intensity Iσ(ν

′) nor-
malized to the intensity of the r.f. pulse relates to the
contact by [26]

Iσ(ν
′) =

C′

2πν′2
ln2(ẼB/EB)

ln2(ν′EF /ẼB) + π2
= C′ × I(ν′). (1)

Here, ν′ = hν/EF and ẼB = ẼB,3D is the binding energy
of the most weakly bound state of atoms in the final state.
Since the three-dimensional binding energy between the
| − 9/2〉 and | − 5/2〉 states is ẼB,3D ≈ h × 3MHz [28]
(in the relevant magnetic field range between 204G and
209G) and therefore much larger than ~ωz, the effects of
quasi-two-dimensional confinement on the binding energy
can be neglected. Generally, final state interactions can
play a significant role for the contact in two dimensions
since their contribution disappears only logarithmically
with increasing binding energy of the final state.

We extract the contact C′ from the data by dividing
the momentum-integrated intensity of the spectrum by
the function I(ν′) and fitting the resulting constant at
large ν′. The inset in Figure 4 shows an example for a
typical data set. In Fig. 4 we plot the measured C′ as
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a function of 1/ ln(kF a2D) at T/TF = 0.27 (solid blue
points). We compare our experimental results with the
theory for the trapped gas at finite temperature (solid
blue line). The contact was calculated using the theoret-
ical momentum-integrated spectral function and fitting
a pure 1/ν2 decay as the theory does not include final
state interactions. Our calculations show that the value
of C′ is reduced by temperature and by the inhomogene-
ity, due to a transfer of spectral weight induced by the
Hartree term from the 1/ν2 tail to low energy.

The agreement is excellent in the regime of weak cou-
pling. The calculation of the temperature-dependent con-
tact at larger coupling requires further work, as the ef-
fects of the bound state become important when EB ap-
proaches kBT . For comparison, we also show the zero-
temperature prediction of the contact for a homogeneous
system based on a quantum-Monte-Carlo calculation [29]
(dashed gray line). In order to derive the contact from
the total energy data of reference [29], we have used
the adiabatic theorem dE′/d[ln(kFa2D)] = C′/π, where
E′ = E/EF . In the weak coupling regime, both the
experimental results as well as our theoretical values
are slightly below the zero-temperature theory. This is
the expected behaviour of the contact, which decreases
with increasing temperature. In the strongly interact-
ing regime, our data come closer to the zero tempera-
ture prediction, possibly because when EB > kBT the
contribution of the bound state to the contact becomes
more dominant. Finally, we also show the prediction of
the contact for the homogeneous Fermi liquid at zero
temperature, which has been derived from the power
series expansion of the total energy per particle [13]
2E′/N = 1 − 1/ ln(kFa2D) + A/ ln(kF a2D)2 + ... with
A = 3/4− ln(2).

The above results show that momentum-resolved r.f.
spectroscopy can be employed to extract important in-
formation about a Fermi liquid, such as the self-energy,
and that disentangling the dynamical part of the self-
energy from the non-trivial contributions arising from
the Hartree term in the trap is important. The latter
could only be overcome using confining potentials differ-
ent from the usually employed harmonic potential, since
our theoretical analysis shows that the Hartree contri-
bution is independent of the strength of the harmonic
potential.
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