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We investigate dissipation-induced p-wave paired states of fermions in two dimensions and show
the existence of spatially separated Majorana zero modes in a phase with vanishing Chern number.
We construct an explicit and natural model of a dissipative vortex that traps a single of these modes,
and establish its topological origin by mapping the problem to a chiral one-dimensional wire where
we observe a non-equilibrium topological phase transition characterized by an abrupt change of a
topological invariant (winding number). We show that the existence of a single Majorana zero mode
in the vortex core is intimately tied to the dissipative nature of our model. Engineered dissipation
opens up possibilities for experimentally realizing such states with no Hamiltonian counterpart.

The search for topological phases of matter in which el-
ementary excitations exhibit non-Abelian statistics have
brought two-dimensional (2D) p-wave paired superfluids
and superconductors to the forefront of theoretical and
experimental condensed-matter research [1–5]. The bulk
of these systems is fundamentally intriguing in that it
reveals physics beyond the Landau paradigm: different
phases are characterized by distinct values of a nonlocal,
topological order parameter known as the Chern num-
ber, and phase transitions occur whenever the topology
changes, signaled by discontinuities in this integer-valued
topological invariant. In topologically non-trivial phases
corresponding to an odd Chern number, vortices with
odd vorticity have been predicted to carry unpaired Ma-
jorana fermions, and to exhibit non-Abelian exchange
statistics as a result [6].

In this Letter, we explore the concept of topologi-
cal order and its connection to the edge physics in a
non-equilibrium scenario based on engineered dissipa-
tion [7, 8]. Prior work on quantum-state engineering
in driven-dissipative systems has shown that topologi-
cally non-trivial states of many-body Hamiltonians can
also be prepared as steady states of a dissipative dynam-
ics [9]. In contrast, we demonstrate that dissipation can
lead to a novel manifestation of topological order with
no Hamiltonian counterpart. Specifically, we show that
spatially separated Majorana zero modes (MZMs) can
be obtained in a 2D, dissipation-induced p-wave paired
phase of spin-polarized fermions with vanishing Chern
number. Remarkably, a phase whose topological nature
is seemingly trivial –according to the standard diagnostic
tool provided by the Chern number– can therefore exhibit
phenomenological features characteristic of a non-trivial
one, which ultimately leads to the counterintuitive fact
that vortices with odd vorticity may obey non-Abelian
exchange statistics in a bulk with zero Chern number.

We demonstrate these results in a simple model moti-
vated by an implementation scheme based on cold atoms
and optical vortex imprinting [10], where fermion parity
is microscopically conserved. We show that they hold

over an extended parameter range, in which we identify
a topologically non-trivial phase missed by Chern num-
ber considerations. Critical points are revealed upon in-
troducing a vortex, in which case we establish the phe-
nomenology of a non-equilibrium topological phase tran-
sition characterized by (i) a discontinuity in a topologi-
cal invariant (winding number), (ii) divergent length and
time scales [8, 11–13], and (iii) a divergent localization
length associated with a MZM bound to the vortex core.
The basic mechanism behind our findings relies on

the fact that the introduction of a (dissipative) vortex
changes the system in two crucial respects: it modifies its
topology, as argued in Refs. [14, 15], and imposes specific
(dissipative) boundary conditions. Here we show that our
model of a vortex with odd vorticity can be mapped to
a 1D chiral fermion problem [16] characterized by a non-
trivial topological invariant (winding number) ν1D = 2
despite a vanishing bulk Chern number. In such a situa-
tion, bulk-edge correspondence arguments [4, 17–19] sug-
gest the existence of a pair of MZMs in the vortex core.
However, owing to the dissipative boundary conditions
imposed by the geometry of the vortex core alone –which
underpins the universal nature of our findings– a single

MZM only is found in the core. This phenomenon cru-
cially relies on dissipation, and therefore has no Hamilto-
nian counterpart. It shows that the potentially harmful
effect of dissipation on MZMs [20–22] need not be en-
tirely destructive, but may instead give rise to intriguing
novel effects.
Dissipative framework – We consider a system of N

fermionic sites a†i , ai evolving under a purely dissipative
dynamics governed by a Lindblad master equation

∂tρ = κ

N
∑

i=1

(

LiρL
†
i −

1
2
{L†

iLi, ρ}
)

, (1)

where ρ is the system density matrix, κ the damping
rate, and Li are Lindblad operators which are linear in
the fermionic operators. The steady state of such dynam-
ics is pure if and only if the Lindblad operators form a
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set of anticommuting operators, i.e. {Li, Lj} = 0 for all
i, j = 1, . . . , N . If so, it can be identified with the ground
state of the parent Hamiltonian Hparent ≡

∑

i L
†
iLi. Al-

though purity is not required for the existence of topolog-
ical order [9], we will only encounter steady states that
are pure in the bulk, whose (bulk) topological proper-
ties can be inferred from Hparent alone. In our dissipa-
tive setting, the analog of a gap in a Hamiltonian spec-
trum is a dissipative gap in the Liouvillian spectrum,
which dynamically isolates the subspaces corresponding
to the bulk and edge modes, thereby providing the coun-
terpart of a gap protection through the quantum Zeno
effect [23]. Most importantly, the counterpart of topolog-
ical ground-state degeneracy is the existence of a nonlocal
decoherence-free subspace associated with zero-damping
Majorana modes γ = γ† which satisfy the orthogonal-
ity condition {Li, γ} = {L†

i , γ} = 0 for all i (see Sup-
plementary Information (SI)). Clearly, this condition is
more restrictive than the one for a zero-energy Majo-
rana mode of a Hamiltonian, which reads (for Hparent)

[Hparent, γ] =
∑

i(L
†
i{Li, γ} − {L†

i , γ}Li) = 0. The cru-
cial difference stems from the first “recycling” term on
the right-hand side of Eq. (1), and is the reason why dis-
sipation can crucially modify the Majorana physics found
in the Hamiltonian context.
The model – We consider a square-lattice system

driven by so-called “cross” Lindblad operators defined as
the following quasi-local linear superposition of fermionic
creation and annihilation operators a†i , ai:

Li ≡ C†
i + α eiφAi = β a†i + (a†i1 + a†i2 + a†i3 + a†i4)

+ α eiφ(ai1 + iai2 − ai3 − iai4),

(2)

where β ∈ R, α > 0, φ ∈ [0, 2π), and i1, i2, i3 and i4 are
the four clockwise-ordered nearest-neighboring sites of i.
The creation and annihilation parts of Li have s- and p-
wave symmetries, respectively. The dissipative dynamics
generated by such Lindblad operators can be obtained,
for example, as the long-time limit of a microscopically
number-conserving (quartic) dissipative dynamics gener-
ating phase-locked paired states (see SI). In that con-
text, the global relative phase φ between the creation
and annihilation parts of Li emerges through sponta-
neous breaking of the global U(1) symmetry, and the
relative strength α is determined by the average particle
number. The dimensionless parameter β, on the other
hand, can be used to tune the system across phase tran-
sitions, as will be shown below.
The steady-state bulk properties of the system are

most easily revealed in the infinite-size limit. Defining
coefficients uij , vij such that Li =

∑

j(uijaj + vija
†
j), the

momentum-space cross Lindblad operators take the form
Lk = ukak + vka

†
−k

, where uk, vk are the Fourier trans-
forms of uij , vij . Properly normalized, they become Bo-
goliubov quasiparticle operators associated with damping

rates κk = κNk, where Nk = ξ†
k
ξk with ξT

k
= (uk, vk).

One can easily verify that the cross Lindblad operators
form a complete set of anticommuting operators, so that
the system is driven into a unique and pure complex p-
wave paired state |Ω〉 defined by the condition Lk|Ω〉 = 0
(for all k) and fully characterized by the real vector

nk = ξ†
k
σξk, where σ is a vector of Pauli matrices. Since

(i) this steady state is pure (i.e. |nk| = 1 for all k) and
(ii) time-reversal symmetry is broken due to the complex
p-wave nature of the state [24], the topological invariant
relevant to that case coincides with the Chern number
ν2D commonly used in 2D Hamiltonian systems (see e.g.
Ref. [25]). Here we find that the Chern number van-
ishes [26], namely,

ν2D ≡ 1
4π

∫

BZ

d2k nk · (∂kx
nk × ∂ky

nk) = 0 (3)

(where BZ stands for “Brillouin zone”) for all values of
β except at the isolated points β = 0 and β = ±4 where
the dissipative gap closes (see SI). Since there is no ex-
tended parameter range with non-trivial topological or-
der, one naively expects topological features such as iso-
lated MZMs to be absent when edges or vortices are in-
troduced. We will show below that such conclusions are
premature: single, unpaired MZMs are generally found
in the parameter range 0 < |β| < 4 when dissipative
vortices with odd vorticity are introduced.
Physically, the special values β = 0, ±4 appear as crit-

ical points since the dissipative gap closes at these values,
leading to divergent length and time scales characteris-
tic of a second-order phase transition [12, 13]. However,
the symmetry of the steady state (encoded in nk) and the
value of the topological invariant ν2D both are identical in
the neighborhood of those points. It thus seems as if the
apparent critical behavior can neither be traced to a con-
ventional phase transition (with broken symmetry), nor
to a topological one (with a discontinuity in the topolog-
ical invariant). Below we will show that the introduction
of a vortex makes it possible to define another topolog-
ical invariant. This will allow us to identify β = ±4 as
genuine critical points associated with topological phase
transitions.
Introducing a dissipative vortex – We now introduce

a dissipative vortex, by modifying the annihilation part
Ai =

∑

j uijaj of the above cross Lindblad operators.
More specifically, we replace the translation-invariant
coefficients uij ≡ ũij considered so far by position-
dependent coefficients of the form uij = f(rj)e

−iℓϕj ũij ,
where (rj , ϕj) are polar coordinates defined with respect
to a particular site i0 chosen as the center of the vortex
core. Two crucial ingredients appear in this definition:
(i) a real, rotation-invariant vortex profile function f(r)
which goes to zero in the vortex core, and (ii) a vortex
phase that winds ℓ times around the origin i0 (ℓ being the
vorticity). These properties of a dissipative vortex nat-
urally arise in an implementation with ultracold atoms
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based on optical vortex imprinting (see SI). They are
fully analogous to those of a vortex in a Hamiltonian
scenario. In particular, a π-flux is optically imprinted
onto the matter system in the case ℓ = 1.

In what follows, we show that an odd dissipative vortex
(i.e. with odd vorticity) generically traps a single, iso-
lated MZM despite the seemingly trivial topological na-
ture of the bulk. We focus on the simplest case of a single
vortex with ℓ = 1 and proceed in two main steps. First,
we demonstrate that the vortex phase crucially modifies
the topology of the system and construct a mapping to an
effective 1D model. Second, we examine the effect of the
dissipative “boundary” conditions imposed in the vortex
core by the profile function f(r), and show that the latter
are responsible for the existence of a single MZM in the
core.

Mapping to a chiral 1D wire – To exemplify how an odd
dissipative vortex changes the topology of the system,
we consider the case ℓ = 1 and assume, without loss of
generality, that the vortex profile function f(r) vanishes
as r → 0 and satisfies f(r) = 1 for r > rc. We identify the
region r < rc as the vortex core. In order to capture the
generic properties of the bulk, we first focus on an annular
region centered around the vortex core (Fig. 1(a), left)
where f(r) is constant and the relevant p-wave operator
carries the vortex phase, e−iϕ(∂x+i∂y) (in the continuum
limit, for simplicity). As made explicit in the SI, our

FIG. 1. (Color online). Mechanism ensuring the existence of a
single MZM in the core of an odd dissipative vortex. (a), Left:
ℓ = 1 vortex on the plane, characterized by a core (blue) and
a phase factor premultiplying the p-wave operator ∂x + i∂y.
Right: Mapping from the (grey) annular region around the
vortex core to the cylinder –where the vortex phase disappears
from the relevant p-wave operator– and reduction to a (chiral)
1D wire problem (red). (b) Topological phase diagram for the
planar model of Eq. (2) with no vortex (blue, characterized by
the Chern number ν2D) and with a single ℓ = 1 vortex (red,
characterized by the winding number ν1D). (c) Dissipative
boundary conditions of the 1D wire inherited from the vortex
core profile (see text).

model is, in this region, formally equivalent to a cylinder
model with p-wave operator of the form ∂x′+i∂y′ ((x′, y′)
being Cartesian coordinates on the cylinder; see Fig. 1(a),
right) as in the original translation-invariant model on
the plane (see Eq. (2)). There exists therefore a one-to-
one correspondence between the original planar model
with an ℓ = 1 vortex and the same model in cylinder
geometry with no vortex. Physically, this stems from
the fact that the gauge field e−iϕ imposed on the plane
to describe the vortex naturally arises on the cylinder
owing to the extrinsic curvature of the latter.
In order to further extract the essence of the single-

vortex problem, we revert to the original lattice de-
scription and take advantage of the translation invari-
ance along the y′-direction. Defining Fourier-transformed
Lindblad operators Lx′(ky′) ∝

∑

y′ e−iky′y
′

Lx′,y′ , we re-
duce the system to a stack of 1D wires that can be inves-
tigated along the lines of Ref. [9]. In the two momentum
sectors corresponding to ky′ = 0 and π, the relevant 1D
Lindblad operators take the form

Li = β′ a†i + (a†i−1 + a†i+1) + (−ai−1 + ai+1), (4)

where i indexes the lattice sites in the x′-direction (such
that Li ≡ Lx′(ky′ = 0 or π)) and β′ ≡ β + 2 (β − 2)
for ky′ = 0 (π). In these two particular sectors, the sys-
tem thus reduces to a 1D wire with chiral symmetry [18].
The steady-state bulk properties of this wire can be un-
veiled in the infinite-size limit, in which case the Lindblad
operators form a complete set of anticommuting opera-
tors, leading to a pure steady state described by a real
unit vector nk as above (see Eq. (3)). Owing to chiral
symmetry, this state can be characterized by a “winding
number” topological invariant ν1D [27]. As detailed in
the SI, we obtain

ν1D ≡ 1
2π

∫

BZ

dk a · (nk × ∂knk) = 2 (5)

for |β′| < 2 (i.e. for 0 < |β| < 4), and ν1D = 0 otherwise
(a being a unit vector orthogonal to nk whose existence
is guaranteed by chiral symmetry). We thus find non-
trivial topological order in the parameter range delim-
ited by the special points β = 0 and ±4 where the Chern
number ν2D exhibits discontinuities. Fig. 1(b) illustrates
the resulting topological phase diagram: non-equilibrium
topological quantum phase transitions occur at the criti-
cal values β = ±4, while β = 0 corresponds to an isolated
point separating two topologically equivalent phases. In
agreement with the full 2D model, the dissipative gap of
the 1D wire closes at each of these values (see SI).
Dissipative boundary conditions – The fact that we

can identify a non-trivial topological invariant in an ef-
fective 1D model describing the region surrounding the
vortex core strongly supports the existence of interest-
ing “edge” physics inside the latter. The bulk steady
state of the 1D wire, which is pure, can equivalently
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FIG. 2. (Color online). Numerical results for a single dissipa-
tive vortex with ℓ = 1 on a square lattice of 35×35 sites with
unit spacing and κ = 1. Left: Typical form of the MZMs lo-
calized in the vortex core and on the edge, respectively (here
for β = 3), and localization length scale ξ associated with
the MZM trapped in the core. Right: Low-lying part of the
damping and purity spectra for β = 2, both featuring a gap
with two zero eigenvalues. All results were obtained for a

vortex profile f(r) = (r/d)e−(r/ξ)2 with d = 10 and ξ = 20.

be described as the ground state of the parent Hamil-
tonian Hparent =

∑

i L
†
iLi. Bulk-edge correspondence

arguments based on Hparent would therefore suggest the
existence of ν1D = 2 MZMs at the edges of the wire –i.e.,
in particular, in the vortex core. In our general dissi-
pative setting, however, bulk-edge correspondence argu-
ments can only be formulated in the presence of a dissi-
pative gap and in the absence of modes corresponding to
subspaces in which the steady state is completely mixed,
which we refer to as purity zero modes (see SI). Keeping
in mind that the presence of dissipative boundary condi-
tions can potentially give rise to such modes, we now pro-
ceed to examine the “edge” physics that emerges in the
vortex core as a result of the dissipative boundary con-
ditions imposed by the vortex profile function f(r). To
this end, we first extend the above mapping by reducing
the inner radius of the annular region shown in Fig. 1(a)
to zero. The resulting extended 1D wire is depicted in
Fig. 1(c); its first, leftmost site corresponds to the center
of the vortex core where f(r) vanishes, as shown in blue.
The fact that f(r) varies from site to site in the vortex
core crucially leads to a violation of the purity condition
{Li, Lj} = 0 (for all i, j) which is satisfied in the bulk,
as mentioned above. One can easily verify that the anti-
commutator {Li, Lj} increasingly deviates from zero for
|i− j| ≤ 2 upon approaching the left edge of the wire. As
a consequence, the steady state increasingly loses purity
and departs from the ground state of Hparent featuring
a pair of MZMs. Remarkably, one and only one MZM
survives at the edge of the wire –or, equivalently, in the
vortex core– in the full parameter range 0 < |β| < 4 as-
sociated with a non-trivial topological phase. This mode

is explicitly constructed in the SI, and is shown to be
exponentially localized, on a characteristic length scale
ξ = ξ(|β′|) ∼ 1/|log (|β′|/2)| which diverges at |β′| = 2,
i.e. at β = ±4. At these values which coincide with the
critical points found above, the norm of the wavefunction
associated with the MZM diverges with the length of the
wire, while the dissipative gap closes in the bulk. This
further confirms the onset of a non-equilibrium topologi-
cal quantum phase transition. The second MZM naively
expected in the vortex core, by contrast, acquires a finite
damping rate and becomes an environmental degree of
freedom with no correlations with the rest of the system.
As shown in the SI, any zero mode of Hparent which ac-
quires a finite damping rate is effectively traced out of the
system in steady state, independently of the initial con-
ditions. We refer to such a mode with no Hamiltonian
counterpart as an intrinsic purity zero mode, in accor-
dance with the fact that its existence is intrinsic to the
dissipative dynamics itself.
The above findings are supported by extensive numeri-

cal simulations, confirming the existence of a single MZM
trapped in the vortex core in the full parameter range
0 < |β| < 4 for arbitrary vortex profile functions, as well
as the divergence of the corresponding localization length
upon approaching the critical points β = ±4 (see Fig. 2).
As expected, an intrinsic purity zero mode is found in
the vortex core. Similar features are obtained for odd
vortices with ℓ > 1; even vortices, in contrast, do not ex-
hibit any MZM, as expected from the fact that the vortex
phase can be gauged away in that case (see e.g. Ref. [1]).
Our numerical results generally support the main conclu-
sion that odd dissipative vortices generically trap single,
isolated MZMs despite the seemingly trivial topological
nature of the system. Following the arguments of Ref. [9],
we expect such vortices to exhibit non-Abelian exchange
statistics when braided around each other through adia-
batic parameter changes.
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