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The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system
and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful
technique that simplifies the simulation of stochastically-driven quantum systems. We expand the
applicability of this technique by completely characterizing the class of diffusive Markov processes
for which a useful hierarchy of equations can be derived. The expansion of this technique enables the
examination of quantum systems driven by non-Gaussian stochastic processes with bounded range.
We present an application of this extended technique by simulating Stark-tuned Förster resonance
transfer in Rydberg atoms with non-perturbative position fluctuations.

Describing the dynamics of a quantum system coupled
to uncontrolled degrees of freedom has been an impor-
tant problem since the inception of quantum mechanics,
e.g., [1]. The accurate description of such open quantum
systems is particularly vital for the design of quantum
technologies, such as quantum computers. Several ap-
proximate and exact methods exist for describing the
dynamics of open quantum systems, including master
equations, surrogate Hamiltonians, and Monte-Carlo nu-
merical simulations.

In this work, we examine quantum systems driven lin-
early by classical fluctuations. That is, the Hamiltonian
for the system is described by ĤΩ(t) = Ĥ0+Ω(t)V̂ , where
Ω(t) is a time-dependent stochastic variable. This is a
sub-class of a more general open quantum system where
Ω(t) is an operator in the Hilbert space of an uncon-
trolled environment. The replacement of the operator
with a scalar variable is an approximation that is valid
in certain limits (e.g., in the high temperature limit of
a bosonic environment). Scalar fluctuations can also de-
scribe noise in a quantum system that is controlled by an
effectively classical quantity, such as a gate voltage.

For such stochastic evolution, the dynamics of the sys-
tem under a given trace of the noise is dictated by the
von-Neumann (Schrödinger) equation:

∂

∂t
ρ̂(t|{Ω(t)}) = − i

~
[ĤΩ(t), ρ̂(t|{Ω(t)})]. (1)

Here, the notation ρ̂(t|{Ω(t)}) is used to explicitly in-
dicate that this density matrix is conditioned on a par-
ticular realization of the noise process. This equation is
formally solved to yield ρ̂(t|{Ω(t)}) = Û(t, 0)ρ̂0Û(t, 0)†,

for initial state ρ0, where Û(t, 0) = T e− i
~
∫ t
0
ĤΩ(t) with

T being the time-ordering operator. We are often more
interested in the unconditioned evolution of the system
state, after the fluctuating quantity has been averaged:

ρ̂(t) = 〈ρ̂(t|{Ω(t)})〉{Ω(t)}, (2)

where the angled brackets denote an expectation value
over the stochastic process up to time t. We will re-
fer to differential equations describing the evolution of

this averaged quantity as reduced equations of motion.
In this work we derive reduced equations of motion for a
quantum system coupled to a wide family of stochastic
processes.

We focus on stochastic processes that are time-
continuous, time-homogenous, and Markov, which means
that the evolution of the conditional probability distribu-
tion for the process evolves as [2–4]

∂

∂t
P (Ω, t|Ω′, t′) = ΓΩP (Ω, t|Ω′, t′), (3)

where P (Ω, t|Ω′, t′) is the probability that the stochastic
process takes the value Ω at time t given that it took
the value Ω′ at time t′ (t′ ≤ t). ΓΩ is the forward gen-
erator of the process and is a differential operator only
involving derivatives with respect to Ω. The generator
of evolution is in general a complex quantity that results
from a Kramers-Moyal expansion of the (classical) mas-
ter equation for the probability distribution of the process
[2]. Below, we will restrict ourselves to certain forms of
this generator, but for now only the Markov assumption
will be used.

In order to derive an expression related to the reduced
equations of motion in a simple manner, consider the
quantity ρ̂(t,Ω) ≡ ρ̂Ω(t)P (Ω, t), which is the joint distri-
bution of the quantum-mechanical coordinates and the
stochastic variable at time t. ρ̂Ω(t) ≡ ρ̂(t|Ω(t)) is the
density matrix conditioned on the value of the stochas-
tic process at time t (in contrast to ρ̂(t|{Ω(t)}), which
is the density matrix conditioned on an entire history of
the stochastic process). Evaluating the time derivative of
this joint distribution results in the stochastic Liouville
equation, first derived by Kubo [5]:

∂ρ̂(t,Ω)

∂t
=

[
− i
~
Ĥ×0 −

i

~
Ω(t)V̂ ×

]
ρ̂(t,Ω) + ΓΩρ̂(t,Ω),(4)

where A×B ≡ [A,B]. Here, we have used the fact that
because the stochastic process is Markov, the time evo-
lution of P (Ω, t) follows the same law as the conditional
distribution in Eq. (3) and is generated by ΓΩ. This
simple linear form for the evolution of the joint distri-
bution is possible because both the conditional quantum
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density matrix and the probability distribution for the
stochastic variable evolve linearly and in a Markov fash-
ion. Because ρ̂(t,Ω) is a joint distribution, its marginal
over the stochastic variable yields the average density
matrix, i.e., ρ̂(t) =

∫
D dΩρ̂(t,Ω), where D is the range of

the stochastic variable [6].

Markov diffusion processes. A wide a class of phys-
ical processes can be approximated by truncating the
Kramers-Moyal expansion for the generator ΓΩ of the
Markov process at the second term [2]. This results in
the Fokker-Planck equation for the probability distribu-
tion, with the generator being the differential operator

[4]: ΓFP
Ω ≡ ΦΩ = − ∂

∂ΩA(Ω) + 1
2

∂2

∂Ω2B(Ω), where A(Ω)
and B(Ω) are real differentiable coefficients, with the re-
striction that B > 0.

For such diffusion processes, it is common to define
the backward, or adjoint, generator for the process:←−
Φ Ω = A(Ω) ∂

∂Ω + 1
2B(Ω) ∂2

∂2Ω . For a Markov process,
Eq. (3) is often called the forward Kolmogorov equation

and ∂
∂t′P (Ω, t|Ω′, t′) =

←−
Φ Ω′P (Ω, t|Ω′, t′) is the backward

Kolmogorov equation. Let fn(Ω) and
←−
f n(Ω) be eigen-

functions of the forward and backward generators, re-

spectively, i.e., ΦΩfn(Ω) = −λnfn(Ω) and
←−
Φ Ω
←−
f n(Ω) =

−λn
←−
f n(Ω), with λn ≥ 0 [2]. These two eigenfunctions

are related through the stationary distribution of the pro-

cess, explicitly fn(Ω) = P 0(Ω)
←−
f n(Ω), where P 0 is the

stationary distribution of the process Ω [3]. Furthermore,
the eigenfunctions of the backward generator form a com-
plete, orthogonal system (on the range D) under the mea-
sure induced by the stationary distribution of the process:∫
D dΩP 0(Ω)

←−
f n(Ω)

←−
f m(Ω) = δmn, which in turn implies

the following about the eigenfunctions of the forward gen-
erator [3]:

∫
D dΩ(P 0(Ω))−1fn(Ω)fm(Ω) = δmn

Diffusive hierarchical equations of motion. Us-

ing the completeness and orthogonality of the backward
and forward generator eigenfunctions [3], we can ex-
pand P (Ω, t) in terms of these eigenfunctions, and conse-
quently, ρ̂(t,Ω) ≡ ρ̂Ω(t)P (Ω, t) =

∑∞
n=0 ρ̄n(t)fn(Ω) Here,

ρ̄n(t) are unnormalized auxiliary density matrices, which
do not have the interpretation of being conditioned den-
sity matrices of the quantum system. Then, expressing
the stochastic Liouville equation Eq. (4) in terms of this
eigenfunction expansion yields

∞∑
n=0

∂

∂t
ρ̄n(t)fn(Ω) =

∞∑
n=0

− i
~
H×0 ρ̄n(t)fn(Ω)

− i
~
V ×ρ̄n(t) [Ω(t)fn(Ω)]− λnρ̄n(t)fn(Ω). (5)

To simplify further, we make the assumption that the
eigenfunctions of the backward Markov generator are

polynomials in Ω, i.e.,
←−
f n(Ω) is an nth order polyno-

mial in Ω. With this assumption, we utilize the following
theorem, typically attributed to Favard [7], which states
an important property of orthogonal polynomials:

Theorem (Favard): Let {pn(x)}, n ≥ 0 be a system
of polynomials. This system satisfies a three-term recur-
rence relation pn+1(x) = (Anx+Bn)pn(x)−Cnpn−1(x),
(with p−1(x) = 0) if and only if it is a system of or-
thogonal polynomials. Here An 6= 0, Bn and Cn 6= 0 are
Ω-independent (real) recurrence coefficients.

Favard’s theorem implies that the orthogonal polyno-
mial eigenfunctions of the backward Markov generator
(and hence, those of the forward Markov generator) sat-
isfy the three-term recurrence relations:

Ωfn(Ω) =
Cn

An
fn−1(Ω)− Bn

An
fn(Ω) +

1

An
fn+1(Ω). (6)

Using this recurrence relation, the eigenfunction expan-
sion of the stochastic Liouville equation becomes:

∞∑
n=0

∂

∂t
ρ̄n(t)fn(Ω) =

∞∑
n=0

[
− i
~
H×0 − λn

]
ρ̄n(t)fn(Ω)− i

~
V ×ρ̄n(t)

[
1

An
fn+1(Ω) +

Cn

An
fn−1(Ω)− Bn

An
fn(Ω)

]
(7)

Multiplying both sides of this equation by fm(Ω)/P 0(Ω) and integrating over Ω results in an equation for each m
because of the orthogonality of the functions fn(Ω). These equations form a hierarchy of coupled (operator) differential
equations, which we refer to as diffusive hierarchical equations of motion (DHEOM) [8]:

∂

∂t
ρ̄0(t) = −

[
i

~

(
H×0 −

B0

A0
V ×
)

+ λ0

]
ρ̄0(t)− i

~
C1

A1
V ×ρ̄1(t),

∂

∂t
ρ̄n(t) = −

[
i

~

(
H×0 −

Bn

An
V ×
)

+ λn

]
ρ̄n(t)− i

~
Cn+1

An+1
V ×ρ̄n+1(t)− i

~
1

An−1
V ×ρ̄n−1(t), n > 0. (8)

These equations are useful because they describe the evo-
lution of the system density matrix under the influence of
stochastic noise, but without explicit reference to noise
variables. In addition, each member of the hierarchy only

couples to its two neighbors, i.e., n couples to n+ 1 and
n−1, making their integration easy. We also need to spec-
ify the initial conditions and the prescription for calcu-
lating the system density matrix from the solution of the



3

hierarchy of coupled equations. A physically motivated
initial state for the quantity ρ̂(t,Ω) is ρ̂(0,Ω) = ρ̂0P 0(Ω),
where P 0 is the stationary (equilibrium) distribution of
the noise process and ρ̂0 is any system density matrix.
Evolution from this initial state describes the response
of a quantum system to fluctuations around the bath
equilibrium. Now, ΦΩP

0 = 0 by definition, and there-
fore, ρ̄0(0) = ρ̂0, and ρ̄n(0) = 0 ∀ n 6= 0. At any time,
the system density matrix is defined as the integral of the
quantity ρ̂(t,Ω) over Ω:

ρ̂(t) =

∫
D
dΩ ρ̂(t,Ω) =

∫
D
dΩ

∞∑
n=0

ρ̄n(t)fn(Ω) ∝ ρ̄0(t).

The proportionality is a result of the following property
of the eigenfunctions:∫

D
dΩ fn(Ω) ∝

∫
D
dΩ P 0(Ω)

←−
f n(Ω)

←−
f 0(Ω) = δn0,

where this proportionality follows from the fact that
←−
f 0

is a zeroth-order polynomial in Ω. As we shall see below,

it is always possible to choose
←−
f 0 = 1, and therefore, the

proportionality above can be converted to an equality.
Hence, the auxiliary density matrix ρ̄0(t) always keeps
track of the averaged system density matrix ρ̂(t).

To summarize, we have shown that the dynamics of
a quantum system that is linearly driven by a diffusion
process with a Markov generator possessing polynomial
eigenfunctions can be described by a hierarchy of cou-
pled dynamical equations. The solution to these equa-
tions will reproduce the reduced density matrix of the
quantum system at any time, with no approximations.
However, the above hierarchy of equations is infinite, and
therefore, we require some truncation strategy in order
to solve them. If the equations can be truncated at some
n = N at the expense of bounded error, they can be nu-
merically solved (or analytically solved via a partial frac-
tion expansion if H0 is time-independent [9]). A general
truncation strategy exists if the following conditions hold:
(1) for large enough n = N , |λN | � ||H×0 − BN

AN
V ×||2,

and (2) 1
An
∈ ω

(
Cn

An

)
, where || · ||2 is the induced 2-norm

and fn ∈ ω(gn) is indicates that fn dominates gn asymp-
totically (in n). In the Supplementary Information, we
develop such a general truncation strategy that results in
the following terminator equation for the hierarchy at a
level N satisfying these conditions:

∂

∂t
ρ̄N (t) = −

[
i

~

(
H×0 −

BN

AN
V ×
)

+ λN

]
ρ̄N (t)− 1

~2

CN+1

λN+1AN+1AN
V ×V ×ρ̄N (t)− i

~
1

AN−1
V ×ρ̄N−1(t). (9)

We now turn to characterizing the diffusive stochastic
processes with generators that have polynomial eigen-
functions. A quantum system driven by each one of
these processes will have a dynamical description in terms
of the DHEOM derived above. The combination of
Bochner’s theorem [10], which is stated explicitly in the
Supplementary Information, and Favard’s theorem im-
plies that there are only three diffusive processes with
backward and forward generators that have orthogonal
polynomial eigenfunctions: (a) the Ornstein-Uhlenbeck
(OU) process, defined on (−∞,∞) (b) the square-root
process, defined on (Ωmin,∞) and (c) the Jacobi process,
defined on (Ωmin,Ωmax). In the Supplementary Informa-
tion we list these diffusive processes with their orthogonal
polynomial eigenfunctions and other relevant properties
(table 1), and also explicitly write the DHEOM that de-
scribe the dynamics of a quantum system linearly driven
by each of the above three stochastic processes. The Ja-
cobi process is particularly efficient to simulate because
the eigenvalues λn of its generator scale quadratically
with n, making truncation possible at a smaller depth
than for the other two processes, where λn scales linearly
with n. We note that the DHEOM for the OU process
was previously derived by Kubo and Tanimura [5, 9], but
this more general framework resulting in DHEOMs for
all major diffusive Markov processes was heretofore un-

known. As explained in the Supplementary Information,
the DHEOM method is limited to simulating square-root
processes with mean reversion rate γ > 1, whereas any γ
is valid for the other processes. Finally, for complete-
ness the Supplementary Information also presents the
DHEOM for the propagator for the dynamical map as
opposed to the density matrix.

Application and Discussion. The primary advan-
tage of our general formulation of DHEOM is that it
allows for the efficient simulation of quantum systems
driven by noise sources with bounded range and non-
Gaussian amplitude distribution. As an application, we
consider energy transfer between two systems mediated
by a dipole-dipole interaction. This interaction is an ap-
proximation to the Coulomb coupling of electric charge
distributions and is the basis of several common exper-
imental techniques, such as Förster resonance energy
transfer (FRET) spectroscopy [11] and Stark-tuned reso-
nant transfer in Rydberg atoms [12, 13]; we focus on this
latter system as our example.

The electric dipole-dipole coupling energy scales as
J ∝ 1/R3, where R is the distance between the coupled
molecules or atoms. Consider the case where this inter-
particle spacing is varying in time as a result of ther-
mal, electromagnetic, or vibrational fluctuations. If the
fluctuations in R are treated perturbatively the dipole-
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FIG. 1. Average population in the excited state of atom 2
after an interaction time of T = 1µs as a function of the Stark
detuning for different models of motional noise. The black
(solid) curve is for coherent evolution with no fluctuation in
inter-atom distance. The parameters used are: γ = 1.5, µ = 1
for all noise sources, and σ2 = 0.3 for the OU process. The
square root process is defined in the semi-interval [0,∞) with
c1 = 1, and the Jacobi process in the interval (1/8, 8) with
c = 1. See Supplementary Information for the interpretation
of these parameters.

dipole coupling energy can be expanded linearly around
the mean separation, R0: J ∼ 1/R3

0−(3/R2
0)δR(t). How-

ever, in cases where such a perturbative treatment is
not accurate we must consider the energy J as a time-
dependent fluctuating quantity in a range [Jmin, Jmax].
To explore the consequences of such a non-perturbative
treatment, consider the Hamiltonian of two interacting
Rydberg atoms: H = −ε1σ1

z−ε2σ2
z +J(t)(σ1

+σ
2
−+σ1

−σ
2
+),

where we restrict the description of the atoms to the
two energy levels relevant to the energy transfer, and
therefore use Pauli matrices to describe them as effective
two-level systems in the basis

∣∣ri−〉 , ∣∣ri+〉 where ri± are
Rydberg states for atom i with the energy gap εi, i.e.,
σi
z

∣∣ri±〉 = ±εi
∣∣ri±〉. Typically, these levels are chosen

so that when an electric field tunes atomic energies by
the Stark effect they satisfy ε1 = ε2 (Förster resonance
condition) at some critical field value. For example,
in Ref. [13],

∣∣r1
+

〉
=
∣∣37P3/2

〉
,
∣∣r1
−
〉

=
∣∣37S1/2

〉
,
∣∣r2

+

〉
=∣∣38S1/2

〉
,
∣∣r2
−
〉

=
∣∣37P3/2

〉
, where these are fine states of

Rb atoms. We ignore relaxation of these states because
for sufficiently cooled Rydberg atoms it can be neglected
on the timescales we are considering [14]. We also assume
that the relative orientation of the atomic dipoles remains
constant. The initial state is the excited state of atom
1: ρ0 =

∣∣r1
+, r

2
−
〉 〈
r1
+, r

2
−
∣∣, and the dipole-dipole coupling

is assumed to fluctuate as J(t) ≡ J0Ω(t), where Ω(t) is
one of the three diffusive noise processes described above.
The quantity being observed (e.g., by selective field ion-
ization [13]) is the population in the excited state of atom
2 after an interaction time T . Although position fluctu-
ations were reported to be minor in the experiment of
Ref. [13], we use physical parameters compatible with

this experiment for concreteness: J0/~ = 0.5MHz, and
T = 1µs. Fig. 1 shows the average population of

∣∣r2
+

〉
at

T for different values of the Stark detuning ∆ ≡ ε2 − ε1.
We expect that this transferred population will drop off
as |∆| increases (as the atoms become less resonant), but
the figure shows that the behavior of this drop-off de-
pends heavily on the exact nature of the fluctuations in
R, although all processes have the same mean µ = 1 and
mean reversion rate γ = 1.5. The OU and square-root
processes predict average populations that have signifi-
cant oscillations as a function of the detuning, similar to
the completely coherent (noiseless) case. In contrast, the
Jacobi process driven evolution predicts damped oscilla-
tions and smaller transfer populations. We predict that
for experiments performed in this regime, where position
fluctuations are relevant, the Jacobi process average will
be more accurate (and they are certainly more consistent
with what is experimentally observed in Ref. [13]). This
is because the Jacobi process is a more accurate descrip-
tion than the OU and square-root processes, which can
only be approximations in this scenario; realistic trapping
conditions impose strict lower and upper bounds on J re-
sulting from the fact that the atoms can only drift within
the trap volumes. The OU and square-root simulations
predict large transfer populations because rare, unphysi-
cal, large magnitude couplings contribute to the averages
in these cases while they do not to the Jacobi process av-
erage. These results emphasize the advantage of being
able to efficiently average over non-Gaussian noise pro-
cesses with bounded range. To underscore the numerical
efficiency of the DHEOM simulations, we note that the
calculations producing Fig. 1 were performed 10 times
faster using the present theory than conventional Monte
Carlo sampling of the noise processes [15]. Furthermore,
because of the well-defined truncation strategy, conver-
gence issues and noise are not a concern for DHEOM
simulations as in the Monte Carlo approach.

Summary. We have completely characterized the
class of diffusively driven quantum systems for which a
useful hierarchy of reduced equations of motion can be
derived, and explicitly derived these DHEOM. We ap-
plied the technique to examine position fluctuation de-
pendence of Stark tuned Förster resonance between Ryd-
berg atoms. We expect that the general techniques devel-
oped in this work will be useful for widening the range of
open quantum systems that can be simulated efficiently.
Use of the DHEOM for Jacobi processes will be partic-
ularly useful for modeling quantum systems subject to
fluctuations with bounded range, e.g., classical noise in
external control fields [16].
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