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Abstract: A precision-machined cross-slot flow geometry with a shape that has been optimized 

by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional 

viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the 

evolution and growth of macromolecular anisotropy along the stagnation point streamline, and 

we observe the formation of a strong and uniform birefringent strand when the dimensionless 

flow strength exceeds a critical Weissenberg number, Wicrit ≈  0.5. Birefringence and bulk 

pressure drop measurements provide self-consistent estimates of the planar extensional viscosity 

of the fluid over a wide range of deformation rates -1 -1(26 s 435 s )ε≤ ≤  and are also in close 

agreement with numerical simulations performed using a finitely extensible non-linear elastic 

(FENE) dumbbell model. 
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Since its first use in the study of drag-reducing polymer solutions [1], the cross-slot 

device has played a central role in enhancing our understanding of macromolecular dynamics 

and non-linear effects in complex fluids undergoing strongly extensional flows [2-4]. The cross-

slot geometry consists of perpendicular, bisecting channels with opposing inlets and outlets 

(half-width H), resulting in a flow field with a stagnation point located at the center of symmetry, 

see Fig. 1(a). At this singular hyperbolic point, the flow velocity is zero but the velocity gradient 

is finite, and an elongational flow is generated along the streamlines flowing outwards along the 

x-direction. In polymer solutions, macromolecules become trapped at the stagnation point for (in 

principle) infinite time and can accumulate significant macromolecular strain provided the 

velocity gradient (ε ) exceeds one-half of the relaxation rate (1 2λ ) of the polymer [5, 6], such 

that the Weissenberg number, Wi 0.5ελ= > . Such behavior has been confirmed in stagnation 

point flows involving both point-wise birefringence measurements [2, 7] and direct observations 

of unraveling fluorescently-labeled DNA [3, 8, 9]. Perhaps the most important consequence of 

the stretching of macromolecules in extensional flows is the associated non-linear increase in the 

tensile stress difference ( xx yyτ τ− ) or equivalently the extensional viscosity ( ( )E xx yyη τ τ ε= − ), 

which is important in diverse applications including enhanced oil recovery [10, 11] and turbulent 

drag reduction [12, 13]. In the cross-slot device the extensional viscosity enhancement is 

manifested as an excess pressure drop across the geometry, which suggests the potential of such 

devices as extensional rheometers for complex fluids [14].  However, in traditional cross-slot 

devices the extension rate is only well-defined at the stagnation point itself and decays rapidly 

with distance along the flow axes [15]. To circumvent this limitation, Alves [16] proposed a 

numerical method to design an optimized cross-slot geometry that would result in a constant, 

homogeneous extension rate along the in- and out-flowing symmetry planes. The resulting shape 
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of the optimal geometry and the strain rate field obtained numerically for Newtonian creeping 

flow are shown in Fig. 1(b). To illustrate the homogeneity of the strain rate, we plot the velocity 

gradient xx xv xε = ∂ ∂  along the outflow direction. For an ideal planar extensional flow with 

[ ] [ ]   , , 0.1 ,x yv v x y U H x yε ε⎡ ⎤ = − = −⎣ ⎦  the deformation rate becomes 0.1xx U Hε =  everywhere. 

As shown by Fig. 1(b), the ideal kinematics are closely approximated over the central region of 

the geometry. Near the walls, shearing effects minimize the stretching of fluid elements, but the 

stagnant concavities at the salient corners of the device help ‘self-lubricate’ the flow. 

 Because the viscoelastic stress field τ  resulting from these kinematics is a homogeneous 

extensional deformation, it provides no significant perturbative contribution .∇ τ  to the equation 

of motion, and the optimized geometries obtained for a wide range of constitutive equations and 

Weissenberg numbers are almost identical. Therefore, the kinematics are universally applicable 

for exploring the extensional response of complex fluids at low Reynolds number (Re). 

Simulations with a nonlinear dumbbell model utilizing the Chilcott-Rallison closure (FENE-CR) 

[17] predict the localized extensional stress field in the device shown in Fig. 1(c), with an 

internal boundary layer in the normal stress difference ( 1 xx yyN τ τ= − ) of almost uniform 

magnitude along the symmetry axis. The advantages of such a device for experimental 

extensional rheometry are evident: a homogeneous extensional flow field is realized which 

provides an enhanced excess pressure drop (compared with a conventional cross-slot design) due 

to the dramatically expanded region of planar elongational flow with constant strain rate. 

Measurements of flow-induced birefringence in the device can also be averaged along the 

outflow axis, rather than being monitored only locally at the stagnation point.  

In this Letter, we report the fabrication of an Optimized Shape Cross-slot Extensional 

Rheometer (OSCER, see Fig. 1(d)), with a geometry determined using the numerical 
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optimization scheme outlined by Alves [16]. The OSCER device is shown to impose the 

numerically-predicted optimized flow field and provides spatially-resolved flow-induced 

birefringence and global pressure drop data from which self-consistent estimates of the 

extensional viscosity of a dilute flexible polymer solution are obtained over a wide range of 

extension rates. The experimental results are also in close quantitative agreement with the 

predictions of a FENE-CR model. 

The device shown in Fig. 1(d) is fabricated from stainless steel by the technique of wire-

electrical discharge machining. The inlet and outlet channels are initially parallel (half-width 

H = 100 μm) over a distance of 1.4 mm (14H) in the up- and downstream sections. The 

optimized shape is located over the central 3 mm of the device (15H either side of the stagnation 

point). The device has a depth of d = 2.10 mm (aspect ratio, α = 10.5), hence the flow is 

approximately 2D. The flexible, linear polymer is a high molecular weight poly(ethylene oxide) 

(PEO, MW = 1 MDa; polydispersity index 7w nM M ≈ ) dissolved to a concentration 

c = 0.05 wt% in 66 wt% aqueous glycerol (solvent viscosity sη  = 0.0129 Pa s at 25°C). The PEO 

solution has a low-shear rate viscosity of η  = 0.0141 Pa s which remains almost constant up to 

shear rates γ >  2500 s-1. The intrinsic viscosity of the PEO solution was calculated to be [ ]η ≈

 370 mL g-1 [18], indicating an overlap concentration of * 0.27 wt%c = . Hence the fluid is dilute 

(c/c* < 0.2). The PEO radius of gyration is gR ≈  53 nm, and the equilibrium end-end distance, 

1 22
0 6  129 nmgr R= ≈ . The repeat unit mass of 42 Da and length of 0.278 nm [19], defines 

the contour length of CL ≈  6.6 μm, hence the maximum attainable macromolecular strain is 

1 22
0  50CL L r= ≈ . The relaxation time of the fluid is λ  = 6.5 ms, determined using capillary 

breakup extensional rheometry (CaBER) [20]. The computed extensibility parameter (L2 = 2500) 
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and measured relaxation time were used in the FENE-CR simulations along with the solvent 

viscosity ( sη ) and the polymer viscosity contribution, p sη η η= −  = 0.0012 Pa s. We define the 

Reynolds number Re 2= UHρ η , where the fluid density ρ  = 1157 kg m-3 and 4U Q Hd=  is 

the “superficial flow velocity” in the upstream and downstream parallel sections of channel, with 

Q  representing the total volumetric flow rate. 

In Fig. 2 we quantify the flow field within the OSCER device by performing particle 

image velocimetry (PIV) on fluid seeded with 1 μm diameter fluorescent tracer particles. At 

moderate flow rates, Fig. 2(a), the dilute PEO solution exhibits a highly symmetric and 

Newtonian-like flow field, with circular contours of constant velocity around a central stagnation 

point. As the flow rate is increased above the coil-stretch transition, Fig. 2(b), the stagnation 

region becomes elongated along the x-direction and the outflow velocity profile ( )xv y  becomes 

weakly non-monotonic near the exit channels. Such non-monotonic flow profiles can be 

reproduced numerically by modeling the elastic birefringent strand located along the outflow 

axis as an internal stress boundary layer within the flow field [21]. Plotting the PIV data for 

( )xv x , measured along the y = 0 axis, illustrates the linearity of the flow velocity (Fig. 2(c)) and 

the constancy of the extension rate ( )xx xv xε = ∂ ∂  for x  < 1.5 mm. At low flow rates, the 

velocity profile closely matches the Newtonian result (as well as the numerical prediction, not 

shown). For x  > 1.5 mm the normalized velocity xv U ≈  1.6, as expected for Poiseuille flow 

of a constant viscosity fluid in a rectangular channel with α = 10.5. Fig. 2(d) shows the velocity 

gradient (ε ) measured along the outflow axis for the viscoelastic PEO solution over a range of 

flow rates, compared with the Newtonian result. The Newtonian velocity gradient increases 

linearly with flow rate ( 1066Uε ≈ , with U in m s-1), as expected for this optimized geometrical 
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configuration. For the dilute PEO solution at low flow rates, ε  follows the Newtonian trend; 

however, above the coil-stretch transition the perturbation of the velocity field due to the elastic 

tensile stresses in the stretching fluid elements results in a weak decrease of the expected strain 

rate, which is well described as 2.11066 528U Uε ≈ − . 

The modification of the flow field along the outflowing symmetry axis results from the 

orientation and stretching of macromolecules in the high velocity gradient. Consequently flow-

induced optical anisotropy (birefringence) develops, as shown in Fig. 3(a)-(d) for a range of 

extension rates. The experiments are performed using a polarizing microscope (ABRIO, CRi 

Inc.) to measure the point-wise retardation R(x,y) with a spatial resolution of approximately 

2 μm/pixel. The retardation is related to the birefringence ( nΔ ) by 
/ 2

/ 2

d
d

d

R n z
−

= Δ∫  (or R d n= Δ , 

assuming two-dimensional flow). The birefringent elastic strands resulting from the localized 

macromolecular orientation generate high tensile stress differences and cause an increase in the 

local extensional viscosity of the fluid. This feeds back on the flow field, causing the reduction in 

the local flow velocity and modifying the local velocity gradient [7, 21]. In fluids of sufficient 

elasticity, this flow modification can result in the onset of purely-elastic flow asymmetries, in 

which the flow field becomes distorted about the stagnation point, leading to spatio-temporally 

varying kinematics [4, 22, 23].  

The variation in the measured retardance along the x = 0 axis, Fig. 3(e), shows the 

extreme localization of stretching along the outflow axis. The localization results from the high 

strains and extension rates that are required to substantially stretch the flexible macromolecules. 

Such conditions only arise along streamlines passing very close to the stagnation point, where 

the residence time is maximal. The full-width at half-maximum of the strands scales with Wi in 
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the form predicted by Becherer et al. [24] (Fig. 3(e), insert). The intensity of the retardance along 

the lengths of the strands remains essentially constant in x across the entire field of view 

(Fig. 3(f)). In Fig. 3(g) we plot the intensity of the birefringence measured on the y = 0 axis as a 

function of ε , showing the standard deviation as error bars. The birefringence (Δn) first becomes 

measurable at ε ≈  100 s-1 and then increases approximately linearly with ε . The birefringence 

can be related to the viscoelastic tensile stress difference in the stretching fluid through the 

stress-optical rule, n C τΔ = Δ , where C is the stress-optical coefficient. Using an experimentally 

determined value of C = 0.44 × 10-9 Pa-1 (see discussion below) to convert from computed 

normal stress difference to birefringence, the FENE-CR model accurately predicts the 

birefringence in the PEO solution (reduced chi-squared value, 2 0.83redχ = ).  

The linear increase in birefringence with strain rate is explained by the finite 

polydispersity of the PEO sample, as successively lower molecular weight fractions of the 

sample stretch as ε  is incremented [2]. The measured birefringence can also be used to estimate 

the average extension ratio of the PEO chains 
1 22

Cr Lβ = , where 
1 22r  is the ensemble-

average end-end distance at a given extension rate. We use the model of Treloar [25] to relate the 

birefringence to the extension ratio through an approximation to the inverse Langevin function. 

As shown by the insert in Fig. 3(g), the ensemble-average extension ratio first increases at 

Wi 0.5crit ≈  and rises monotonically to β ≈  0.3 at Wi ≈  2.8. Numerical simulations and 

previous stagnation point experiments at low Re (e.g. [3, 7]) suggest that β  would continue to 

increase beyond this value if the extension rate (or Wi) were increased further. However, for this 

low viscosity aqueous solution, further increases in flow rate result in an inertio-elastic instability 

(Re 7.7, Wi 2.8)crit crit≈ ≈  that distorts the birefringent strand. The corresponding critical value of 
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the strain rate critε  could be extended by reducing the characteristic dimension, H. A strongly 

progressive saturation of the birefringence with strain rate is expected as more of the polymer 

chains in the molecular weight distribution approach their finite extensibility limit [2, 26]. 

We evaluate the steady-state extensional viscosity of the dilute PEO test solution using 

both bulk pressure drop measurements and local birefringence data obtained in the OSCER 

device. The pressure drop is evaluated in two steps, see Fig. 4(a). The first measurement ( totalPΔ ) 

is obtained with flow into both opposing inlets and out of both opposing outlets, so that the 

stagnation point is present and a birefringent strand is formed. Subsequently, one inlet valve and 

one outlet valve is closed and the pressure drop is measured for steady shearing flow around one 

corner of the device ( shearPΔ ). Because of the homogeneity of the extensional flow in this 

geometry, a simple subtraction allows a first order estimate of the extensional stress carried by 

the stretching fluid, excess total shearP P PτΔ ≈ Δ = Δ − Δ . In the insert of Fig. 4(a) we show excessPΔ  as a 

function of ε . In Fig. 4(b), we present two measurements of the extensional viscosity and the 

dimensionless Trouton ratio, Tr Eη η= , as a function of ε . The hollow circles represent 

E excessPη ε= Δ  determined from the bulk pressure drop data and the solid squares represent 

E n Cη ε= Δ  determined from the local birefringence measurements. The stress-optic coefficient 

of C = 0.44 × 10-9 Pa-1 is found from a linear regression through the origin of the nΔ  versus 

excessPΔ  plot (Fig. 4(b) insert). This value of C is consistent with values obtained from shear flow 

experiments with aqueous PEO solutions [27]. For this dilute polymer solution, we measure 

Trouton ratios of Tr 400≈  at Wi 3≈ . The solid line in Fig. 4(b) shows the prediction of the 

FENE-CR model, which is in good agreement with the experiments over a broad range of 

imposed extension rates. 
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We have shown that computational optimization techniques can be used to design 

idealized microfluidic flow geometries for applications in complex fluid rheometry. We 

optimized the shape of the canonical cross-slot geometry in order to provide a nominally 

constant extension rate over a greatly extended spatial domain (~30H) of the inlet and outlet 

channels. The optimized kinematic design was confirmed using PIV measurements with a 

Newtonian solvent and a dilute solution of flexible linear macromolecules. Self-consistent 

measures of the extensional viscosity of a dilute PEO solution have been extracted from both 

bulk pressure drop and local birefringence measurements. We have also shown that a non-linear 

elastic dumbbell model with molecular parameters based directly on the measured viscometric 

properties and the known chain characteristics of PEO can accurately predict the growth of the 

extensional viscosity with strain rate. This is the first time that a microfluidic device for complex 

fluid rheometry has been fully designed using computational optimization tools, and the desired 

kinematics have been verified experimentally. The OSCER device enables a homogeneous 

extensional flow field to be applied to dilute and low viscosity polymer solutions, over a far 

greater range of extensional strain rates than are possible in existing filament stretching and 

capillary breakup rheometers. Its capabilities can be readily extended by reducing the 

characteristic channel dimension (to access higher Wi and lower Re). The OSCER offers 

tremendous potential as the basis for the next generation of cross-slot geometries, not only for 

measuring the true extensional rheology of complex fluids but also for performing controlled 

extensional deformations and breakup of droplets [28], vesicles [29] and cells [30].  
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FIGURE CAPTIONS 
 

FIG 1. (a) Schematic representation of a cross-slot geometry, showing the coordinate 

system and characteristic dimension (H). (b) Strain rate field for numerically simulated 

Newtonian creeping flow in the optimized cross-slot geometry. (c) Computed normal stress 

difference, N1(x,y), for flow of a FENE-CR fluid in the optimized geometry at ε  = 400 s-1. (d) 

Optical micrograph of the OSCER geometry. The ideal profile obtained by numerical 

optimization is superimposed in green. 

FIG 2. (a) Experimentally measured velocity field (with superimposed streamlines) for a 

dilute PEO solution in the OSCER at a superficial flow velocity U = 0.08 m s-1, Wi = 0.56. (b) 

Velocity field for flow of the same PEO solution at U = 0.4 m s -1, Wi = 2.25. (c) Dimensionless 

measured velocity profiles along the y = 0 (outflow) axis for the dilute PEO solution over a range 

of flow rates, along with the Newtonian result. (d) Extension rate as a function of the flow 

velocity in the OSCER for the dilute PEO solution, also showing the corresponding Newtonian 

result for comparison. 

FIG 3. (a)-(d) Birefringence images of the dilute PEO solution in the OSCER over a 

range of flow rates. (e) Retardation profiles R(y) across the birefringent strands (along x = 0). 

Insert shows the full-width at half-maximum as a function of Wi, fitted with an equation of the 

form predicted by Becherer et al. [24]. (f) Intensity profiles along the length of the birefringent 

strands (y = 0), legend as for Fig. 3(e). (g) Peak birefringence intensity as a function of the 

extension rate, compared with the prediction of the FENE-CR model. The insert shows the 

ensemble-averaged extension ratio (β) as a function of Wi. 

FIG 4. (a) Pressure drop measured in shear (ΔPshear) and extension (ΔPtotal) for flow of the 

dilute PEO solution in the OSCER. The insert shows the excess pressure drop (ΔPexcess = ΔPtotal 

 - ΔPshear) as a function of ε . (b) Extensional viscosity and Trouton ratio as a function of ε , 

determined from both bulk excess pressure drop and local birefringence measurements and 

compared with the prediction of the FENE-CR model. The insert plot shows Δn versus ΔPexcess, 

used to determine the stress optical coefficient (C = 0.44 × 10-9 Pa-1).   

 










