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ABSTRACT   
In this letter, we aim at making nanoparticles embedded in a host semiconductor with a size comparable 

to electronic wavelengths “invisible” to the electron transport. Inspired by the recent progress made in 

the optics, and working within the framework of the expansion of partial waves, we demonstrate that the 

opposite effects imposed by potential barriers and wells of a core-shell nanoparticle on the phase shifts 

associated with the scattered electron wave could make the scattering cross section of the first two 

partial waves vanish simultaneously. We show that this is sufficient to cloak the nanoparticle from being 

detected by electrons with specific energy in the sense that a total scattering cross section smaller than 

0.01% of the physical cross section can be obtained and 4 orders of magnitude difference in the total 

scattering cross section can be presented within an energy range of only 40meV, indicating possible 

applications of the “electron cloaks” as novel electronic switches and sensors, and in efficient energy 

harvesting and conversion technologies. 
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In the last decade, the successful design and construction of artificial metamaterials with unusual 

electromagnetic properties [1-4] opened up new venues to manipulate the propagation and scattering of 

waves in various forms, as illustrated in the development of different schemes for the “ultimate optical 

illusion” [2] – invisibility, or the “cloaking effect”. On the other hand, as the characteristic length of 

electronic devices becomes smaller and smaller, the control of ballistic electron transport processes 

becomes increasingly important, for which artificial scattering centers would serve as an effective gear. 

In this letter, we seek for a convergence of the two seemingly unrelated paths. 
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Two classes of approaches have been proposed so far to designing optical cloaks, namely 

transformation optics [1-2, 5] and Mie theory-based scattering cross section minimization [4, 11-13]. 

Transformation optics utilizes the fact that a coordinate transformation in Maxwell equations is 

equivalent to a mapping between the distributions of material properties in the two coordinate spaces 

[5]. A natural extension of this method to quantum matter waves has been intensively investigated 

recently [6-9], but the resulting anisotropic and/or strongly-spatial dependent distribution of effective 

mass and/or potential makes the cloaking of electrons extremely difficult to be realized in practical 

scenarios such as in solid state systems. Conduction electrons in a semiconductor have typical energy of 

few Bk T (tens of meV) and wavelength of 0.1 to 10 nm. The question we would like to address is 

whether we can use the freedom of design to create scattering centers inside electronic devices that do 

not scatter conducting electrons of a specific energy range, and if so, how tunable the energy range and 

the on-off scattering ratio could be. Such possibility allows the realization of novel filtering and 

switching devices and has potential applications in quantum information storage, processing and 

communication, and in situations where a strongly energy-dependent electronic scattering is desirable, 

such as in thermoelectrics [10].   Moreover, if we can combine the “cloaked” scattering centers and the 

carrier resources [14], i.e. cloak the carrier donating centers in the relevant energy range, we can 

improve the carrier mobility significantly and design new materials for semiconductor devices such as 

transistors and diodes where high carrier mobility is desired. 

Applying the Mie theory under the assumption that the scatterer size is much smaller than the optical 

wavelength, Alú et al. [4,11-13] proposed that a properly designed cover made of isotropic and 

homogeneous plasmonic material or metamaterial could drastically reduce the scattering cross section 

seen by EM waves of a dielectric (or metal) sphere by vanishing the lowest order electric dipolar 

contribution, and in subsequent publications, they demonstrated the possibility of canceling both electric 

and magnetic dipolar contribution at the same time for a larger scatterer [12] or achieving “cloaking” at 

two different frequencies [4], given more degrees of freedom. Along this approach, a generic difficulty 
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for electron cloaking is that the practical size of nanoparticles is comparable to the wavelength of 

conducting electrons in solids, thus the contribution of the waves with higher order angular momentum 

always play a non-negligible role. Here we adopt a parallel approach formulated within the framework 

of partial wave method [15] for electrons, which is a close analogy to Mie theory for EM waves, and 

seek for a simple and intuitive solution that sets the scattering cross sections of the first two partial 

waves simultaneously to zero. We show that such criterion is sufficient to cloak a nanoparticle with 

practical size from electrons almost perfectly, in the sense that smaller than 0.01% of the physical cross 

section would be “seen”. 

  The classical way of predicting the cross section of scattered waves by a finite-range spherically 

symmetric potential is the partial wave method [16], where the scattered waves are decomposed into a 

series of partial waves (PWs) with different angular momenta, and the phase shift of each PW with 

respect to the incoming wave is calculated by solving the radial Schrödinger equation and applying the 

continuity of both the wave function and the probability flux at the boundary. For an arbitrary 

spherically symmetric potential, the phase shift of the l th PW, lδ , is given by [16] 
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is the logarithmic derivative of the radial wavefunction at the boundary. After obtaining the phase shifts, 

the total scattering cross section of electrons with specific incident energy can be found via the general 

relation [16]:  
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In principle, all the PWs contribute to the total cross section. In practice, however, the phase shifts of 

higher order PWs are small and the summation converges fast. A general rule of thumb [16] is that the 

summation converges for angular momentum l ka> , indicating that only the lowest few PWs need to 

be taken into account when ka  is small. In semiconductors, the carriers that contribute the most to 

transport usually reside slightly above the bottom of the conduction band (or below the top of the 

valence band, as holes). As an estimation, a combination of typical values of the parameters, i.e. energy 

10E meV= , effective mass 0 1m = , radius of the nanoparticle 2a nm= , gives 1ka ≈ . Thus for practical 

purposes, nearly zero scattering can be achieved by adjusting parameters to make the cross sections of 

only 0th and 1st order PWs vanish at the same time. 

  For the scattering cross section of a certain PW to be zero, the phase shift of the PW must be a multiple 

of π , as can be seen from Eq. (2). For simplicity and practicality, here we only consider uniform 

potential wells and barriers. The uniform potential wells and barriers play opposite roles in shifting the 

phase of the PWs [16], as shown in Fig. 1. A potential well tends to “pull in” the PW or give a negative 

phase shift, while a barrier does the opposite, and both have a stronger effect on the lower order PWs 

than the higher order ones. It is relatively easy to achieve zero cross section for only one PW even with 

a single potential well [16], but it is nontrivial to have a few of PWs with zero scattering at the same 

energy. With a single potential well (barrier), the 0th order PW tends to pick up a more negative 

(positive) phase shift than the 1st order one, and the depth (height) required to give rise to a phase 

difference of π  between the two is usually so large that the higher order contributions need to be 

included. Thus it is extremely difficult, if ever possible, to realize the electron cloak with a single 

uniform potential well (barrier). Here we demonstrate that this end can be achieved by using a core-shell 

structured nanoparticle, modeled as a two-step potential barrier (well) as shown in Fig. 2(a) and we 
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show the coexistence (and counter-play) of the barrier and the well is the key.  

  Suppose we choose the core to be a barrier, with height 1V ( E> ), and effective mass 1m , and the shell 

to be a well, with depth 2V  and effective mass 2m . By solving the radial Schrödinger equation, and 

matching the boundary conditions that guarantee the continuity of both the wavefunction and the 

probability flux, the logarithmic derivative at r a=  can be solved as 
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respectively, and ca  is the core radius. The detailed derivation is placed in the Online Supplementary 

Material [17]. Then the scattering cross sections can be calculated using Eqs. (1) and (2). Rather than 

looking for solutions of a set of multi-variable nonlinear equations, we discuss the possibility of making 

both phase shifts of the first two PWs 0  or π  by only modifying the barrier height and the well depth, 

while fixing other parameters, as shown in Fig. 2(b) and 2(c), where we plot the combinations of 1V  and 

2V  that give both PWs 0  or π  phase shifts given 1 2 0 1m m m= = = , and 0.5ca a= . In Fig. 2(b), the two 

curves do not intersect because in this regime, 2V  is small and 1V  dominates. Given 2V , a larger 1V  is 

required for the 1st order PW to maintain zero phase shift than the 0th order PW (because both barriers 

and wells have a stronger effect on lower order PW) , i.e. the solution curve for the 1st PW always 

shows a larger slope than that for the 0th PW. In Fig. 2(c), the two curves do intersect and we try to 

explain the existence of the solution (intersection) by a simple and intuitive argument in terms of the 

phase shifts. Consider the situation when 1 0V = , a deeper well (a larger 2V ) is required for the 1st PW 

to gain a phase shift of π  than the 0th one for the same reason as mentioned above (this may not always 

be true, since it is possible that certain choice of the effective mass can give a larger initial phase shift to 
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the 1st PW than the 0th one. In this case, the solution that makes both phase shifts equal to π  does not 

exist, but the one that makes both phase shifts larger multiples of π  can be obtained by similar means). 

Beyond this point, a given increase of the well depth ( 2V ) demands a larger increase of 1V  for the 1st 

order PW than the 0th order one to keep the phase shift π , again resulting in a larger slope of the 

solution curve. A deeper (larger) “starting point” and a greater slope of the solution curve for the 1st PW 

guarantee that the two solution curves would cross each other, generating a combination of 1V  and 2V  

that vanishes the cross sections of the first two PWs at the same time. Provided different material 

properties, one can do similar analysis following the above approach. For instance, in Fig. 3(a) we show 

the resulting scattering cross sections when the parameters are chosen as 1 0.9m = , 

2 2.2m = and 0.75 1.5ca a nm= = . The corresponding solution of the potentials are 1 0.057V eV= and 

2 0.788V eV= − . We observe the dip of the scattering rate at the energy 10E meV= as desired, and the 

residue scattering cross section smaller than 0.01% of the physical cross section comes from the 

contribution of higher order PWs. More remarkably, 4 orders of magnitude difference in the total 

scattering cross section is presented within an energy range of only 40meV. In Figs. 3(b) and (c) we 

show the radial distribution function of the PWs with and without the nanoparticle, and phase shifts of 

π  are observed as expected outside of the nanoparticle, thus the wavefunctions outside of the 

nanoparticle are essentially indistinguishable from each other, which is the core of this cloaking scheme. 

In Fig. 4 we show the “stream lines” of the probability flux, depicting how the incident electron waves 

“go through” the nanoparticle, where the wavefunction is calculated analytically taking into account 

partial waves with angular momentum up to 4l = .  

  By adjusting other parameters, a wide range of the barrier heights and well depths can be applicable for 

electron cloaks, for instance as given in Fig. 5(a), where the ratio between the radii of the core and shell 

is varied, giving a great flexibility in the practical design. Also we show the energy-dependent scattering 

rates can be tuned to accommodate different applications via tweaking the effective mass of the core and 
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shell materials. As shown in Fig. 5(b), different scattering-energy dependences can be obtained by 

changing the effective mass of the core in a reasonable range. A sharply varying scattering would be 

good for thermoelectrics and electronic switching and sensing devices, while a flat one may be utilized 

to cloak electrons with a range of incident energies instead of a single one.  

  While it seems nontrivial to find proper combinations of materials with the “correct” effective masses 

and band offsets, this cloaking scheme can be easily implemented on 2D electron gas (2DEG) by proper 

gating as effective “2D nanoparticles”. The formalism and the resulting scattering “width” of an 

electron cloak on a GaAs 2DEG is given in Online Supplementary Information [17], which itself can be 

used as a component in novel electronic switching, sensing and filtering devices. Also potential 

applications of 3D electron cloaks in thermoelectrics will be discussed in another full-length paper [18]. 

  In summary, we present a simple and flexible scheme of designing electron cloaks using core-shell 

structured nanoparticles. It must be pointed out that our purpose of this letter is to demonstrate the 

possibility, rather than give a complete account. Thus there are plenty of other possibilities of achieving 

electron cloaking based on the same concept, such as making both phase shifts larger multiples of π, 

setting the core as potential well and shell as barrier, and even conceiving of multilayered structures and 

so forth. Along this approach, we believe practical combination of materials can be selected and 

experimental realization of the electron cloaks is achievable given the wide range of possibility and 

flexibility.    
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Figure 1.  Effects of potential wells and barriers on the PWs. (a) illustrates the “pulling-in” effect of a well on the 
0th and 1st order PW; (b) illustrates the “pushing-out” effect of a barrier on the 0th and 1st order PW. 
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Figure 2 (a) Conceptual illustration of the core-shell nanoparticle. 1V  is the height of the core potential and 2V  

the depth of the shell potential. (b) Combinations of 1V  and 2V  that make the phase shift of the 0th and 1st PW 
equal to zero respectively. The two curves do not intersect, thus there is no common solution. (c) Combinations of 

1V  and 2V  that make the phase shift of the 0th and 1st PW equal to π  respectively. The two curves intersect at 

1 3.589V eV= and 2 0.671V eV= − . In this case 1 2 0 1m m m= = = , and 2a nm= , 0.5 1ca a nm= = .    
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Figure 3 (a) The total scattering cross section and the contributions from the first 3 PWs versus energy. Here the 
parameters we use are 2a nm= , 1.5ca nm= , 1 0.9m = , 2 2.2m = , and correspondingly 1 0.057V eV= and 

2 0.788V eV= − . (b) The radial distribution functions of the 0th and 1st PWs with and without the nanoparticle, 
showing the phase shift of π as expected. 
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Figure 4  The “stream lines” of the probability flux “going through” the nanoparticle.  Background color depicts 
the phase distribution of the wavefunction. The  phase jump at the centerline of the nanoparticle is a numerical 
artifact. Here the parameters we use are 2a nm= , 1.5ca nm= , 1 0.9m = , 2 2.2m = , and correspondingly 

1 0.057V eV= and 2 0.788V eV= − . 
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Figure 5 (a) The potentials can be tuned in a wide range by adjusting the ratio between the radii of the core and 
the shell. Here 1 2 0 1m m m= = =  and 2a nm= . (b) The energy-dependence of the scattering rates is highly 
tunable by adjusting, for example, the effective mass of the core 1m . For this plot 2 2.2m = , 0 1m =  and 

0.75 1.5ca a nm= = .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


