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The Coulomb gap in the single particle density of states (DOS) is a universal consequence of
electron-electron interaction in disordered systems with localized electron states. Here we show
that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent
Coulomb gaps, which together form a structure that we call a “Coulomb gap triptych.” We calculate
the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation.
Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width
in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

Granular metals and arrays of metallic nanocrystals
(NCs) represent interesting composite systems, wherein
the unique properties of individual NCs are combined
with collective, correlation-driven effects between NCs to
produce novel material properties [1, 2]. One of the most
important of these properties is the electron conductivity,
which in the limit of weak coupling between NCs pro-
ceeds by phonon-assisted tunneling, or “hopping”, be-
tween NCs through the insulating gaps which separate
them. In relatively dense NC arrays, electron conduction
can occur both through nearest-neighbor hopping and
through “cotunneling” of electrons between distant NCs
via a chain of intermediate virtual states [2–5]. In the
presence of some disorder, the latter mechanism dom-
inates at low temperatures, where the length of hops
grows to optimize the conductivity. This transport mech-
anism was introduced by Mott [6] and is called variable
range hopping (VRH). When the Coulomb interaction
between localized electrons is taken into account, it can
be shown that at sufficiently low temperature VRH con-
ductivity obeys the Efros-Shklovskii (ES) law [7]:

σ = σ0 exp
[
− (TES/T )

1/2
]
, (1)

where σ0 is a constant (or a weak, power-law function
of temperature) and TES is a characteristic temperature.
Eq. (1) has been observed in a number of granular metal
systems at low temperature (see Ref. [2] and references
therein). In these systems, as in lightly-doped semicon-
ductors and other “Coulomb glasses”, ES conductivity
can be seen as the result of a vanishing single-particle
density of states (DOS) at the Fermi level µ. This van-
ishing DOS is the consequence of a very general stability
criterion of the ground state [8], and it implies that in a
system of d dimensions the DOS g(E) satisfies

g(E) <
Ad

e2d
|E|d−1. (2)

Here, Ad is some numerical constant of order unity, E is
the electron energy relative to the Fermi level, and e is
the electron charge. Eq. (2) is called the “Coulomb gap.”

In this letter we report an additional striking feature of
the DOS in periodic arrays of monodisperse metal NCs
surrounded by a good insulator with random impurity

charges. Namely, we show that the Coulomb gap at E =
0 necessarily implies the existence of additional, identical
Coulomb gaps at energies E = ±e2/C0, where C0 is the
self-capacitance of each NC. This result is shown in Fig.
1.

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

electron energy, E*

d
e

n
s
it
y
 o

f 
s
ta

te
s
, 
g
*(
E

*)

10
−2

10
−1

10
0

10
−4

10
−2

10
0

10
2

|E*|

g
*(
E

*)

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

electron energy, E*

d
e

n
s
it
y
 o

f 
s
ta

te
s
, 
g
*(
E

*)

10
−2

10
−1

10
0

10
−4

10
−2

10
0

10
2

|E*|

g
*(
E

*)

b)

g ∝ |E|
1.5

g ∝ |E|
2.4

a)

FIG. 1. (Color online) The DOS of a regular array of monodis-
perse NCs, where E∗ = E/(e2/2C0) is the dimensionless
single-particle energy and g∗(E∗) = (e2Dd/2C0)g(E∗) is the
dimensionless DOS, where D is the NC diameter. Here, the
results are shown from a computer simulation of a) a 2d square
lattice and b) a 3d cubic lattice. The shaded area shows
filled electron states, and the empty area indicates empty
states. In addition to electron–hole symmetry, the two peaks
of the DOS have a mirror symmetry across E∗ = ±1, respec-
tively (dotted lines). This symmetry creates from the central
Coulomb gap two additional half-gaps at E∗ = ±2, resulting
in a “Coulomb gap triptych.” Insets show the DOS near the
Fermi level E∗ = 0 in log-log scale.

In Fig. 1 one can see that to the right of the Fermi
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level, at E > 0, the DOS curve g(E) becomes reflected
across the vertical line E = e2/2C0 into the interval
e2/2C0 < E < e2/C0. Similarly, on the left side of the
Fermi level the portion of the g(E) curve corresponding
to −e2/2C0 < E < 0 becomes reflected across the ver-
tical line E = −e2/2C0. We refer to this characteristic
shape as a “Coulomb gap triptych.” As we explain below,
its structure is the result of an additional symmetry in
the system that arises as a result of the discrete charging
spectrum of individual NCs. In this way the Coulomb
gap triptych represents a bridge between the concepts of
the Coulomb gap and the Coulomb blockade.

Experimentally, regular arrays of metal NCs can now
be reliably synthesized with diameter D in the range 3–7
nm and with size dispersion less than 5% [1, 2, 5]. For
such small NCs, the self-capacitance C0 is also small:
C0 = κD/2, where κ is the effective dielectric con-
stant of the array, given approximately by the Maxwell-
Garnett formula [9, 10]. Correspondingly, the Coulomb
self-energy q2/2C0 of an NC with charge q plays a large
and important role in electron transport. To see this,
one can imagine a hypothetical NC array with no disor-
der. In such an array, in the ground state all NCs are
neutral and electron conduction requires the thermal ex-
citation of positive-negative NC pairs. Thus, the conduc-
tivity is activated with an activation energy e2/2C0. For
nanometer-sized NCs, this activation energy can easily
exceed the thermal energy kBT .

In the presence of some finite charge disorder, however,
the fluctuating Coulomb potential can produce charging
of NCs in the ground state and thus lead to a Coulomb
gap in the DOS and to ES conductivity. To show how
this happens, in this letter we adopt the following simpli-
fied model. We assume that identical, spherical, metallic
NCs reside in a regular d-dimensional square lattice with
lattice constant D′, and that impurity charges ±e are
embedded in the insulator (oxide) between NCs. Such
impurity charges can be thought to effectively create a
fractional donor charge Qi that resides on each NC i, for
reasons that are explained below. The net charge of the
NC can then be written as qi = Qi− eni, where ni is the
integer number of electrons that reside on the NC rela-
tive to its neutral state (ni can be positive or negative).
Given this model, the Hamiltonian for the system is

H =
∑
i

(Qi − eni)2

2C0
+
∑
〈i,j〉

C−1ij (Qi−eni)(Qj−enj). (3)

Here, the first term describes the Coulomb self-energy of
each NC and the second term describes the interaction
between charged NCs. The coefficient C−1ij is the inverse
of the matrix of electrostatic induction Cij . This Hamil-
tonian has been also been proposed as a model for arrays
of large semiconductor NCs [11].

Because of the presence of the impurity charges, elec-
trons become redistributed among NCs from their neu-

tral state in order to screen the disorder Coulomb po-
tential. In order to calculate the DOS and conductivity
we first attempt to find numerically the set of electron
occupation numbers {ni} that minimizes the Hamilto-
nian. In the numerical simulations that we describe be-
low, we make the approximations that C0 = κD/2 and
C−1ij = 1/κrij . These approximations do not effect our
main conclusions, as we explain below.

The model of fractional donor charges Qi was first put
forward in Ref. 3; here its justification is briefly repeated.
When an impurity charge, say with charge +e, is located
close to the point of contact between two NCs, labeled A
and B, it induces negative image charges −qA and −qB
in the surfaces of NCs A and B, respectively. This is
shown schematically in Fig. 2. In order to maintain over-
all neutrality of the NCs, an equal and opposite image
charge appears at the center of each NC: +qA and +qB .
(These “image charges at the center” represent a uni-
form electronic charge at the NC surface.) The values of
qA and qB are such that together the image charges −qA
and −qB neutralize the donor charge: qA+qB = e. Their
respective magnitudes are determined by the distance be-
tween the impurity and each NC surface. For example,
if the impurity sits exactly along the line connecting the
centers of NCs A and B and if the gap w = D′ −D be-
tween NCs satisfies w � D, then qAxB = qBxA, where
xA and xB are the distances between the impurity and
the surface of NCs A and B, respectively. Since the im-
purity charges and the image charges −qA, −qB together
form a compact, neutral arrangement, the net effect of
the impurity charge is to produce “fractionalized” donor
charges, such that +qA is relayed to the center of NC A
and +qB is relayed to the center of B.

+qA
+qB

+e

-qB
-qA

D/2

D’

FIG. 2. (Color online) A schematic depiction of the fraction-
alization of a charged impurity (small black circle) between
NCs (large gray circles). The positive impurity induces neg-
ative image charges (white circles) in nearby metal surfaces
and is effectively neutralized, while equal and opposite posi-
tive images are conveyed to the center of the NC (×’s).

In this way, each NC i can be said to have a frac-
tional donor charge Qi, which is equal to the sum total
of the fractionalized charges donated by individual impu-
rities around it. In the limit where there are very many
impurity charges surrounding each NC, one can think
that the random variable Qi is Gaussian-distributed with
some standard deviation larger than e. In fact, how-



3

ever, in such cases one can effectively adopt a much sim-
pler model, in which the value of Qi is chosen randomly
from the uniform distribution Qi ∈ [−e/2,+e/2]. To see
why this model is valid, consider that each NC minimizes
its Coulomb self-energy by minimizing the magnitude of
its net charge, |Qi − eni|. Since ni can take any inte-
ger value, it is generally true that in the ground state
−e/2 ≤ Qi − eni ≤ e/2. In other words, each NC can
effectively adjust to the presence of an arbitrarily strong
charge disorder by changing its electron number ni (say,
by drawing electrons from the voltage source) so that its
net charge acquires a magnitude smaller than e/2. This
has important implications for the disorder-dependence
of conductivity, as we show below.

Given the ground state configuration for a particular
system, defined by the set of electron occupation numbers
{ni}, one can determine the energy of the highest filled

electron level, E
(f)
i , and the lowest empty electron level,

E
(e)
i , at each NC i. Specifically:

E
(f)
i =

2e2ni − 2Qie− e2

2C0
− e

∑
j 6=i

C−1ij (Qj − enj), (4)

E
(e)
i =

2e2ni − 2Qie+ e2

2C0
− e

∑
j 6=i

C−1ij (Qj − enj). (5)

These energies are defined so that the Fermi level µ = 0,

and in the ground state E
(f)
i < 0 and E

(e)
i > 0 for all

i. The single particle DOS g(E) is defined by making

a histogram of the energy values E
(f)
i and E

(e)
i , and has

also been termed the “density of ground states” [3]. More
highly excited electron energy states are ignored in this
work, as they play no role in conductivity at kBT �
e2/C0.

In order to evaluate numerically the DOS, we use a
computer simulation to search for the ground state ar-
rangement of electrons, {ni}, in a finite array of NCs.
For simplicity, we set the lattice constant D′ = D; this
corresponds to the limit where the gap w between NCs
is very thin while the tunneling transparency of the bar-
rier between them remains much smaller than unity. In
our simulation we search for the ground state by looping
over all NC pairs i, j and attempting to move one elec-
tron from i to j. If the move lowers the Hamiltonian H,
then it is accepted, otherwise it is rejected. Equivalently,
one can say that for all i, j we check that the ES ground
state criterion is satisfied:

E
(e)
j − E

(f)
i − e2C−1ij > 0. (6)

It should be noted that this procedure does not in general
find the exact ground state, but only a “pseudo-ground
state” that is stable with respect to single-electron trans-
fers. In principle, the system energy can be lowered fur-
ther by some simultaneous multi-electron transfers. Such
processes are generally seen to have only a relatively

weak effect on the DOS [12, 13] that slightly deepens
the Coulomb gap near the Fermi level.

The resulting DOS is shown in Fig. 1a for a two-
dimensional (2d) simulated system of size 100× 100 lat-
tice sites and in Fig. 1b for a three-dimensional (3d) sys-
tem of size 25 × 25 × 25. Electron energies are plot-
ted in the dimensionless form E∗ = E/(e2/2C0) and
the DOS is plotted in the dimensionless form g∗(E∗) =
(e2Dd/2C0)g(E∗). The insets to these figures show a
log-log plot of the DOS near E = 0, which suggests
that in 2d the DOS follows g2d(E) ∝ E1.5 at small en-
ergies and in 3d g3d(E) ∝ E2.4. These exponents are
somewhat larger than the theoretical ones given in Eq.
(1), so that apparently the ES bound is not saturated.
This is similar to what happens in the Efros model of
the Coulomb glass [14] at disorder strength A = 1 [12].
The results of Fig. 1 are generated using a uniform dis-
tribution Qi ∈ [−e/2, e/2] for the fractional charge. If
one instead takes Qi to be Gaussian-distributed with a
standard deviation ∼ e, the resulting DOS is everywhere
equal to that of Fig. 1 to within 0.6%.

Fig. 1 also highlights the striking additional symme-
try in the DOS in both 2d and 3d, as compared to the
DOS in the conventional Coulomb glass problem [8, 12].
Namely, each peak in the DOS is symmetric with respect
to reflections about E∗ = ±1, so that the DOS has iden-
tical, repeated Coulomb gaps at E∗ = ±2. The origin
of these additional Coulomb gaps can be understood by
noting a particular symmetry in the Hamiltonian that is

reflected in the filled and empty state energies, E
(f)
i and

E
(e)
i . Namely, by subtracting Eqs. (4) and (5) one can

show that

E
∗(e)
i = E

∗(f)
i + 2 (7)

for all i. Thus, all NCs contribute to the DOS two energy
levels – one filled, one empty – separated by e2/C0. This
implies that as the density of states collapses at E very
close to zero (the Coulomb gap), the density of states
must also collapse as E∗ approaches ±2 in identical fash-
ion. That is, the ES stability criterion of Eq. (6) places
constraints both on the DOS near E = 0 and on the DOS
near E = ±e2/C0. A similar observation was made for a
somewhat different system in the very recent Ref. 15.

One can also note that states with E
∗(f)
i < −2 or

E
∗(e)
i > 2 are prohibited, since by Eq. (7) these would

imply that some NC has E
(e)
i < 0 or E

(f)
i > 0. Thus,

g(E) is strictly zero at |E∗| > 2. This is a markedly
different situation than in the conventional Efros model
[14], where the width of the DOS reflects the character-
istic strength of the disorder. In the present problem,
for large enough disorder the DOS has a saturated width
e2/C0. This saturation occurs because the number of
electrons n at each site can adjust to screen an arbitrar-
ily large Coulomb disorder. Thus, one can expect that at
large disorder the conductivity also becomes independent
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of disorder strength.

In order to evaluate the conductivity directly, we em-
ploy the approach of the Miller-Abrahams network [16],
in which each pair ij of NCs is said to be connected
by some equivalent resistance Rij . The value of Rij in-
creases exponentially with the distance rij between NCs
and the activation energy ∆Eij required for electron hop-
ping between i and j according to Rij ∝ exp[2rij/ξ +
∆Eij/kBT ], where ξ is the electron localization length
[3] and the value of ∆Eij is determined by the ground

state energies {E(f)
i } and {E(e)

i } [11]. The resistance of
the system as a whole can be found using a percolation
approach. Specifically, we find the minimum value Rc

such that if all resistances Rij with Rij < Rc are left in-
tact while others are eliminated (replaced with R =∞),
then there exists a percolation pathway connecting op-
posite faces of the simulation volume. The conductivity
of the system σ is equated with 1/(RcD

d−2).

Our results for the conductivity are shown in Fig. 3,
plotted as a function of the dimensionless temperature
T ∗ = 4DC0kBT/(e

2ξ) raised to the power −1/2. The re-
sults indicate that the conductivity is well-described by
the ES law of Eq. (1) at relatively small temperatures
T ∗ � 1, both in 2d and 3d [17]. This behavior is consis-
tent with the prominent Coulomb gaps seen in Fig. 1. In
both 2d and 3d, replacing the uniform distribution of Qi

with a distribution with larger variance — for example,
by taking Qi as the sum of three or more independent
fractional charges — did not affect the conductivity to
within our numerical accuracy. This insensitivity to the
disorder strength stands in contrast to the Efros model
[14], where large disorder widens the DOS, so that ES
conductivity exists only when the temperature is suffi-
ciently small that electron hops are confined to within the
parametrically narrow window of energies in which g(E)
is constrained by the Coulomb gap [8]. On the contrary,
in arrays of monodisperse metallic NCs the DOS becomes
essentially independent of disorder strength, so that even
at large disorder the Coulomb gap plays a prominent role
and the conductivity follows the ES law.

The triptych structure of the DOS should have observ-
able consequences for a number of experiments on metal
NC arrays. It is possible, for example, that the DOS
can be probed directly by tunneling experiments, simi-
lar to the ones that have directly observed the Coulomb
gap in doped semiconductors [18]. For systems with a
finite dispersion δC in the NC self-capacitance, the re-
peated Coulomb gaps will be smeared over some finite
energy interval rather than collapsing to zero exactly at
E∗ = ±2. We simulated this behavior numerically by
adding a stochastic spatial variation to C0, and for a
root mean square deviation δC � C0, we arrived at
g(E∗ = ±2)/g(E∗ = ±1) ≈ 3(δC/C0)2. This implies
that for a system with 5% dispersion in the NC diame-
ter, the collapse of the DOS at E∗ = ±2 is complete to
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FIG. 3. (Color online) The temperature dependence of the
conductivity in a) 2d and b) 3d. In both cases, the con-
ductivity follows the ES law [Eq. (1)] at small temperatures,
T ∗ � 1, as shown by the dashed lines.

within 1%, and the resulting g∗(E∗) curve would not be
distinguishable from that of Fig. 1 if added to the plot.
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L. Wienkes for helpful discussions. This work was sup-
ported primarily by the MRSEC Program of the Na-
tional Science Foundation under Award Number DMR-
0819885. T. Chen was partially supported by the FTPI.

[1] D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V.
Shevchenko, Chemical Reviews 110, 389 (2010).

[2] I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and
K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

[3] J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317
(2004).

[4] I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur,
Phys. Rev. B 72, 125121 (2005).

[5] H. Moreira, Q. Yu, B. Nadal, B. Bresson, M. Rosticher,
N. Lequeux, A. Zimmers, and H. Aubin, Phys. Rev. Lett.
107, 176803 (2011).

[6] N. Mott, Journal of Non-Crystalline Solids 1, 1 (1968).
[7] A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State

Phys. 8, L49 (1975).
[8] A. L. Efros and B. I. Shklovskii, Electronic Properties

of Doped Semiconductors (Springer-Verlag, New York,
1984).

[9] J. C. Maxwell, A Treatise on Electricity and Magnetism,
3rd ed., Vol. 2 (Clarendon, Oxford, 1891) p. 57.

[10] T. Chen, B. Skinner, and B. I. Shklovskii, Phys. Rev. B
84, 245304 (2011).

[11] B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. B

http://dx.doi.org/10.1021/cr900137k
http://dx.doi.org/10.1103/RevModPhys.79.469
http://dx.doi.org/10.1103/PhysRevB.70.115317
http://dx.doi.org/10.1103/PhysRevB.70.115317
http://dx.doi.org/10.1103/PhysRevB.72.125121
http://dx.doi.org/10.1103/PhysRevLett.107.176803
http://dx.doi.org/10.1103/PhysRevLett.107.176803
http://dx.doi.org/10.1016/0022-3093(68)90002-1
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://dx.doi.org/10.1103/PhysRevB.84.245304
http://dx.doi.org/10.1103/PhysRevB.84.245304
http://dx.doi.org/10.1103/PhysRevB.85.205316


5

85, 205316 (2012).
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