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We provide a prescription for constructing Hamiltonians representing the low energy physics of correlated
electron materials with dynamically screened Coulomb interactions. The key feature is a renormalization of the
hopping and hybridization parameters by the processes thatlead to the dynamical screening. The renormaliza-
tion is shown to be non-negligible for various classes of correlated electron materials. The bandwidth reduction
effect is necessary for connecting models to materials behavior and for making quantitative predictions for
low-energy properties of solids.
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A key step in the theoretical analysis of strongly correlated materials is the derivation, from an all-electron Hamiltonian in
the continuum, of an effective model which correctly captures the physics of the low-energy degrees of freedom. Tremendous
progress in this direction has been achieved by using density functional theory (DFT) techniques [1] to compute a full set of
energy bands, from which a subset of correlated orbitals is abstracted for further detailed study using many-body (typically
dynamical mean field (DMFT)) methods [2–4] or LDA+U. The interaction parameters used in the many-body studies are the
matrix elements of the screened Coulomb interaction in the correlated subspace. Various methods are used to obtain the screened
matrix elements, including the constrained local density approximation [5], linear response [6], or the constrained random
phase approximation (cRPA) [7]. This DFT+DMFT approach enables quantitative, testable theoretical predictions for correlated
materials.

In this paper we show that this scheme misses an important aspect of the physics: the downfolding produces a dynamically
screened Coulomb interaction which leads to an effective model with a bandwidth that isreducedrelative to the starting (e.g.
DFT) bandwidth and a low energy spectral weight which is alsoreduced. This effect has previously been noticed [7–10]. A
similar renormalization was also discussed in the context of Holstein-Hubbard models in Refs [11, 12]. We present an explicit
nonperturbative prescription for determining the renormalizations quantitatively, and demonstrate that the resulting effective
model provides a good description of the low-energy part of the full (dynamically interacting) model over wide parameter
ranges. Computations of the renormalizations for wide classes of correlated electron materials indicate that their inclusion is
crucial for a quantitative description, in particular resolving a long-standing discrepancy between the cRPA estimate of the
Coulomb interaction and the values needed to describe experiments.

We first provide a demonstration for the simplest case, wherethe downfolding from the full band structure is to a one-band
model with hopping amplitudetij between the lattice sitesi andj. Electrons with spinσ in the correlated orbital localized
at sitei are created [annihilated] by the operatord†iσ [diσ]. Double occupation of a given atomic site costs a Coulomb energy
U , which is renormalized from a bare valueV (obtained from the site-local matrix elements ofe2/r among the correlated
orbitals) because of screening by degrees of freedom eliminated in the downfolding process. The interaction thus takesthe
general form1

2
(V δ(τ) + Uret(τ))ni(τ)ni(τ

′), with ni(τ) = d†i (τ)di(τ), the local density operator at the imaginary timeτ .
Screening is contained in the retarded partUret, which is parametrized by a continuum of modes of energyν with coupling
strengthλ2(ν) = −ImUret(ν)/π, determined by the charge fluctuations,

Uret(τ) = −
∫ ∞

0

dνλ2(ν) cosh[(τ − β/2)ν]/ sinh[νβ/2], (1)

whereβ is the inverse temperature. For simplicity of presentationwe assume at first that there is only one important bosonic
mode of energyω0 and coupling strengthλ. The Hamiltonian is then

H =−
∑

ijσ

tijd
†
iσdjσ + V

∑

i

d†i↑di↑d
†
i↓di↓ + µ

∑

iσ

d†iσdiσ

+ ω0

∑

i

b†ibi + λ
∑

iσ

d†iσdiσ(bi + b†i ). (2)
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A Lang-Firsov (LF) transformation [13, 14]H → HLF = eSHe−S with S = λ
ω0

∑

iσ niσ(bi + b†i ) allows one to rewrite the

model in terms of the polaron operatorsc†iσ = exp( λ
ω0

(b†i − bi))d
†
iσ andciσ = exp( λ

ω0

(bi − b†i ))diσ . We note thatc andc† obey

the same fermionic anti-commutation relations as the original electronic operators (d andd†). Neglecting one-body terms which
can be absorbed in a chemical potential shift, we have

HLF = −
∑

ijσ

tijc
†
iσcjσ + U0

∑

i

c†i↑ci↑c
†
i↓ci↓ + ω0

∑

i

b†i bi, (3)

with the screened Hubbard interactionU0 = V − 2λ2

ω0

.
We now propose that the low energy effective model is given bythe projection of Eq. (3) onto the subspace of zero-boson

states, Heff = 〈0|H |0〉, an assumption based on the separation of plasmon excitations from the low energy spectral properties.
This ansatz becomes exact in the limit of infinite plasma frequency and as will be seen gives a remarkably good descriptionfor
physically relevant values. The effective model is then

Heff = −
∑

ijσ

ZBtijd
†
iσdjσ + U0

∑

i

d†i↑di↑d
†
i↓di↓, (4)

that is, an effective Hubbard model with an instantaneous interaction corresponding to the low frequency limit of the screened
interaction and a new feature, namely a bandwidth renormalized byZB = exp(−λ2/ω2

0
). An additional physical consequence

of the low-energy projection is that the photoemission spectral weight in the frequency range described by the effective model
is reduced by the factorZB relative to what would naively follow fromHLF . Mathematically,Glow-energy, the physical electron
Green function in the frequency range described by the effective model, is

Glow-energy
ij (τ) = −ZB〈Tdi(τ)d†j(0)〉Heff , (5)

where−〈Tdi(τ)d†j(0)〉Heff is the Green’s functionGeff
ij (τ) of the effective HamiltonianHeff in Eq. (4). Thus the observable

spectral functionAlow-energy= − 1

π
ImGlow-energy(ω − iδ) becomes

Alow-energy(ω) = −ZB

π
ImGeff(ω − iδ). (6)

The physical origin is that part of the physical photoemission spectrum corresponds to the simultaneous creation of a hole and a
plasmon excitation; these plasmon shakeoff processes account for the remaining1− ZB spectral weight.

The effective model becomes an exact description of the low energy physics only when the ratio of the boson frequencyω0

to a relevant energyE∗ diverges, but we find that the effective model gives a reasonably good description even forω0/E
∗ not

too large. As an example, Table I compares exact results (obtained using the methods of Ref. [15]) for the critical interaction
strengthUcrit needed to drive a metal-insulator transition in single-site DMFT to the predictions of the effective model. In these
computations we assume that thetij give a semicircular density of states with half-bandwidthD = 1. Combining previously
computed single site DMFT results [15] with our bandwidth reduction prescription gives, at inverse temperatureβ = 100/D,
an effective model predictionUeff

crit ≈ 2.55ZB. One sees that the effective model result is within15% of the exact result except
when there is strong screening and the boson frequencies aresmaller than the full bandwidth (2 in present units).

Figure 1 compares the electron spectral function, calculated from Eq. (2) with semicircular density of states (half band-
width D = 1), for screened interactionU0 = 2 with values ofZB representative of typical correlated electron materials to
two approximations: the effective model defined above, and a“static U model” which uses the static value of the screened
Coulomb interaction but does not include the bandwidth reduction. The staticU model corresponds to what is normally done in
DFT+DMFT calculations. The analytic continuations are obtained using the technique proposed in Ref. [16]. We see that the
effective model with bandwidth reductionZB reproduces very well the effective bandwidths of the Hubbard bands for allω0

taken into account here, which vary from10 down to2.5. Even the smallestω0, which is not in the antiadiabatic regime, yields
Hubbard bands qualitatively well described by the static model with bandwidth renormalizationZB. The staticU model is seen
to be a poor approximation.

Table II shows the results of an alternative analysis, carried out at the level of the quasiparticle renormalizationa =
1/(1 − ∂Σ/∂iωn), which is obtained directly from the imaginary time computations. We see that the “staticU ” result gives
renormalization factors in error by factors of two or more inthe half filled, strongly correlated case, and also unacceptably large
errors in the weakly correlated quarter filled case. The effective model (rowω0 = ∞) is very close to the exact result for all
screening frequencies in the weakly correlated quarter-filled case and is reasonably close to the exact result even as the adiabatic
limit is approached.
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Analogous arguments for a model comprising also itinerantp states, and thus hopping parametersTpp, Tpd andTdd lead to
a renormalization of eachd operator by the factor

√
ZB = 〈0| exp( λ

ω0

(bi − b†i ))|0〉 so that the hopping part of the one-particle
Hamiltonian is renormalized as

(

p†d†
)

( Tpp
√
ZBTpd√

ZBT †
pd ZBTdd

)(

p
d

)

, (7)

where the site dependence of each orbital species is not explicitly denoted. Equation (7) shows that the bandwidth reduction
implied by our effective model happens in a non trivial way inthe case of the multi-band models usually dealt with in first-
principles calculations.

The arguments we have given are readily generalized to the case of an arbitrary dynamical interaction. The representation of
Eq. (1) corresponds to a continuum of boson excitations,bi(ν), one for each frequencyν in the screening process, with coupling
λ(ν). We then apply a generalized LF transformation obtaining

U0 = V + 2/π

∫ ∞

0

dν ImUret(ν)/ν, (8)

ZB = exp

(

1/π

∫ ∞

0

dν ImUret(ν)/ν
2

)

. (9)

Matching this to the single mode formula implies a characteristic frequency

ω0 =

∫∞

0
dν νImUret(ν)/ν

2

∫∞

0
dν ImUret(ν)/ν2

. (10)

Our theory has important implications for electronic structure calculations for correlated materials. Table (III) presents our
results forω0, ZB andU values for a range of compounds calculated using the cRPA method [7], in the implementation of
Ref. 17. TypicalZB values for oxides or pnictides lie in the range of∼ 0.6 − 0.7 indicating substantial renormalization
of the low energy bandwidths relative to DFT calculations[33], even though the screening frequenciesω0 are typically high.
Standard DFT+DMFT calculations are available for most of the compounds. As shown in Table III, in these calculations,
obtaining agreement with experimental results for mass enhancements and metal-insulator phase diagrams has requiredthe use
of U values substantially (∼ 40%) larger than the low-frequency Hubbard interactions calculated from cRPA. For example,
for SrVO3, LDA+DMFT calculations withU ranging from 4 to 5 eV were found to yield good agreement with experiments
[19–21] (instead of the cRPA value of 3.5 eV). Similarly, in VO2, U = 4.0 eV was used [25, 26] instead ofU = 2.7 eV.
We believe that the difference arises because the previous literature did not incorporate the bandwidth reduction effect, and
artificially compensated this by increasingU . The one apparent exception is SrMnO3, where theU value quoted in Ref. 27 was
chosen to be consistent with the magnetic moment but gaps or other dynamical properties were not studied. A more recent work
of a t2g-only model required a rather larger value of 3.5 eV, but overlap with eg bands precludes a cRPA estimate ofZB in this
case.

Figure 2 shows another illustration of the bandwidth renormalization phenomenon, comparing the spectral function of op-
timally doped BaFe2As2 obtained with the “staticU ” approximation (panel (a)) to the full treatment of the dynamic U , as
explained in Ref. 34 (panel (b)), and the effective model (panel (c)). Comparison of panels (a) and (b) shows that screening
has a substantial effect on the band structure, shifting theenergy positions of bands and band crossings to a significantextent.
(The model with screening also has an increased broadening resulting from a change in proximity to a spin freezing line whose
position depends very sensitively on parameters [34]; thiseffect is not of primary interest here). Comparison of panels (b) and
(c) shows that the effective model captures the changes in band energies very well, and also reproduces the change in lifetime.

To summarize, in this Letter we showed that the low energy effective Hamiltonian relevant to correlated electron materials
involves two renormalizations: a reduction, to a value smaller than the isolated atom value, of the on-site Coulomb interaction
and a reduction, to a value smaller than the band theory value, of the bandwidth. The reduction of the onsite Coulomb interaction
is a straightforward consequence of screening by high energy degrees of freedom and has been discussed in many works. The
reduction of the bandwidth is a more subtle effect, which hasimportant consequences for the low energy physics, including
a reduction in the amplitude, and a narrowing of the width of the low-energy part of the electron spectral function, as well as
a shift in the location of the metal-insulator transition. We have provided a precise prescription for obtaining the bandwidth
reduction and have tested our low-energy effective description against numerically exact dynamical mean field solutions of
Hubbard models with full dynamicU in a range of parameters relevant for correlated materials.Important open questions are
the issues of full charge-self consistency and the related double counting correction, both of which require knowledgeof physics
at energy scales above the range of validity of the low-energy effective model. This is the subject of current research.
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FIG. 1: Spectral functions computed from Eq. (2) at various screening frequenciesω0 with β = 40, screened interactionU0 = 2 and coupling
constants chosen to produce the renormalization factorZB as indicated. Also shown are the spectral functions computed from the effective
model (Eq. (6)) and for the staticU approximation.
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FIG. 2: k-resolved spectral function for KxBa(1−x)Fe2As2 at optimal dopingx = 0.4 andβ = 20eV−1, reported for a staticU standard
DMFT calculation (panel (a)), the DMFT calculation with dynamicU(ω) (panel (b)), and the DMFT calculation for our effective low-energy
model. In all calculations, the static limit ofU(= F0) is U(0) = 2.84 eV, andJ = 0.68 eV. In the effective model, the double counting
correction is set to match thed-electron number of the dynamical calculation.
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Tables

TABLE I: Critical interaction strengthUexact
crit (presented in terms of zero frequency screened value) needed to drive the metal insulator transition

obtained from the single-site DMFT approximation to Eq. (2)at inverse temperatureβ = 100 and compared to the estimateUeff
crit for different

values of the screening frequencyω0 and strengthλ. Also shown is the Lang-Firsov renormalization factorZB = exp[−λ2/ω2
0 ].

ω0 λ ZB Uexact
crit [15] Ueff

crit

1.5 0.820 0.74 2.103 1.891
1.5 2.010 0.17 0.613 0.423
2.5 1.330 0.75 2.085 1.921
2.5 2.770 0.29 0.861 0.747

10.0 3.725 0.87 2.225 2.220
10.0 6.465 0.66 1.640 1.679

TABLE II: Quasiparticle residuea = 1/(1 − ∂Im[Σ(iω)]/∂ω|ω=0) computed from the effective Hamiltonian Eq. (4) with screenedU0 = 2,
and differentω0, ZB and particle density as shown. The values in parenthesis give the relative discrepancy|a(ω0)/a(ω0 → ∞) − 1|. Note
that the static model without bandwidth reduction (last row) is substantially incorrect.

half-filling quarter-filling

ZB=0.861 ZB=0.861 ZB=0.741

ω0 = 2.5 0.137 (0.37) 0.635 (0.04) 0.560 (0.10)
ω0 = 3 0.125 (0.32) 0.631 (0.03) 0.551 (0.08)
ω0 = 10 0.091 (0.06) 0.604 (0.01) 0.509 (0.01)
ω0 = ∞ 0.085 0.609 0.504
static U 0.253 0.713 0.713

TABLE III: Boson renormalisation factorZB , characteristic frequencyω0 [eV], bare interactionV [eV], zero-frequency screened interaction
U0 [eV] as calculated within the cRPA, in the implementation ofRef. [17]. For the oxide and sulfide compounds (except SrMnO3), data
refer to a model comprising only the t2g states, whereU is defined as the average over the diagonal entries of the Hubbard interaction matrix
Ummmm. For the pnictide compounds, as well as for SrMnO3 and CuO, a hybrid “d-dp” model in the notation of Ref. [17, 18]was constructed
andU(= F0) is defined as the average over all density-density interaction matrix elements. Experimental lattice structures (rutile in the case
of VO2, hexagonal lattice in the case of TaS2) were used except in the cases of Sr2VO4, LaVO3 and SrMnO3, where an undistorted (double)
perovskite structure was adopted. The column headedUlit givesU values obtained via a variety of methods other than cRPA claimed in the
literature to give quantitative agreement with experimentwhen used in DFT+DMFT (oxides, sulfides and pnictides) or DFT+U calculations
(SrMnO3 and CuO) within the same correlated subspace, but without the band renormalization physics.

ZB ω0 V U0 Ulit

SrVO3 0.70 18.0 16.5 3.3 4 - 5 [19–22]
Sr2VO4 0.70 18.1 15.7 3.1 4.2 [23]
LaVO3 0.57 10.3 13.3 1.9 5 [24]
VO2 0.67 15.6 15.2 2.7 4 [25, 26]
TaS2 0.79 14.7 8.4 1.5
SrMnO3 0.50 13.3 21.6 3.1 2.7 [27]
BaFe2As2 0.59 15.7 19.7 2.8 5 [28]
LaOFeAs 0.61 16.5 19.1 2.7 3.5 - 5 [28–30]
FeSe 0.63 17.4 20.7 4.2 4 - 5 [28, 31]
CuO 0.63 21.1 26.1 6.8 7.5 [32]


