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Abstract 
 

We have investigated anharmonic behavior of Pd by applying systematic nanoscale 

tensile testing to near defect-free nanowhiskers offering a large range of elastic strain. We 

measured size-dependent deviations from bulk elastic behavior in nanowhiskers with diameters 

as small as ~30 nm.  In addition to size-dependent variations in Young’s modulus in the small 

strain limit, we measured nonlinear elasticity at strains above ~1%.  Both phenomena are 

attributed to higher-order elasticity in the bulk-like core upon being biased from its equilibrium 

configuration due to the role of surface stresses in small volumes. Quantification of the size-

dependent second- and third-order elastic constants allows for calculation of the intrinsic 

material nonlinearity parameter, δ.  Comparison of the size-independent values of δ in our 

nanowhiskers with studies on bulk FCC metals lends further insight into the role of length scales 

on both elastic and plastic mechanical behavior. 
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Nonlinear elasticity in crystalline materials is directly tied to lattice anharmonicity owing 

to large deviations in interatomic separation from the equilibrium values.  Several important 

material properties are defined by this anharmonic regime, including thermal expansion [1–3], 

phonon interactions [1,4,5], and temperature- and pressure-dependence of elastic constants [6–8].  

Measurements of anharmonicity in bulk materials have often been performed through ultrasound 

velocity measurements or microwhisker tensile testing, the latter of which requires the 

introduction of large stresses.  Consequently, such experiments have been limited by the onset of 

plastic relaxation mechanisms at low stresses in these systems [9].  Recent advances in 

mechanical testing allow for investigating the response of nominally defect-free crystalline 

nanostructures in which stresses near theoretically predicted levels are required for plasticity to 

occur [10–12], although rarely has nonlinear elasticity’s role at the nanoscale been addressed.  

Nanoscale volumes comprising large fractions of miscoordinated atoms residing at surfaces and 

interfaces are expected to play an increasingly important role in deformation behavior. 

Nanostructures such as thin films and nanowires are often modeled as composites of atomically 

miscoordinated surfaces (and edges) encompassing a bulk-like core; therefore, it should be 

expected that the relative contributions of surface and bulk effects on elastic behavior are 

roughly correlated to the surface-to-volume ratio [13–15].  In investigating material properties at 

the nanoscale, observed deviations from bulk behavior are often analyzed only within the 

framework of surface contributions such as residual surface stresses and surface stiffness, both of 

which are attributed to the reduced electron density at the surface [16–19].  In the presence of 

residual stresses in the surface, some change in the core must take place to balance these stresses 
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at equilibrium, but these changes and thereby the contributions of the modified core are often 

overlooked.    

Using a combination of defect-free metallic nanowires and in situ mechanical testing, we 

have measured nonlinear mechanical response at applied axial strains in excess of 1% that is 

completely reversible.   By analyzing the size-dependence of the second and third-order elastic 

constants, we deduce a size-independent nonlinearity parameter, which allows for direct 

comparisons to lattice anharmonicity in bulk FCC metals. Our pristine nanoscale crystals and 

systematic testing approach provide results of both nanoscale mechanical phenomena and bulk 

behavior beyond the limit accessible by conventional macroscopic methods. 

The single-crystalline Pd nanowhiskers (NWs) examined in this study were grown by 

thermal evaporation onto a SrTiO3-coated Si substrate under ultra-high vacuum conditions at 

elevated temperature (T~1200ºC).  Further details of the fabrication process can be found 

elsewhere [20,21].  A representative transmission electron microscopy (TEM) image of an as-

grown NW, as shown in Fig. 1(a) confirms that the wires are single-crystalline and free of 

defects visible in TEM, such as dislocations or vacancy aggregates.  Pd is not known to form a 

stable oxide unless exposed to an oxygen environment at elevated temperatures [22–24]. We 

confirm the absence of surface oxide with high resolution scanning TEM , although a thin layer 

of carbon-based deposit from imaging is often observed.  The NW axes are oriented along <110> 

directions (Fig. 1(a) inset) and possess high aspect-ratios, with lengths 5 < l < 20 μm and 

diameters 30 < d < 150 nm.   Individual nanowires were manipulated in a scanning electron 

microscope (SEM) and mounted to a MEMS tensile testing stage via Pt-based electron-beam 

induced deposits (EBID) [25].  Actuation of the testing device is achieved by Joule heating-

induced thermal expansion of polysilicon chevron beams, with heat flow to the sample mitigated 
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by a SiNx strip.  Force on the specimen is deduced by directly measuring displacements of 

compound flexure beams of polysilicon on the opposite grip.  In situ tensile tests were performed 

at room temperature and nominal strain rates ~10-4 s-1 in both an SEM and an optical 

microscope, with most specimens tested elastically in both environments to assure consistent 

results.  Digital image correlation (DIC) [26] of image sequences obtained during testing was 

used to measure the displacements relative to fixed points on the substrate, which are converted 

to specimen stress and strain.  Select experiments, where EBID markers along the length of 

nanowhiskers, were employed to facilitate direct strain measurement and demonstrated good 

agreement with strain deduced from relative grip displacements, demonstrating negligible 

compliance of the gripping material.   (See Supplementary Materials at [URL] for further details 

on the testing approach).   

FIG. 1. (a) TEM image and SAED diffraction pattern (inset) for a sample Pd NW. (b) Thermally-
actuated tensile testing stage onto which NWs are manipulated.  The comb features to the side of 
the sample grips may be used for tracking displacements of the load cell and actuator. (c) Pd NW 
across the testing grips. 
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The stress-strain behavior for all Pd NWs was characterized by linear elastic behavior at 

strains <1% and clear nonlinearity at larger strains.  Systematic unloading beyond the linear 

(Hookean) regime showed the deformation path to follow the nonlinear loading curves and 

return to zero strain, indicating elastic behavior.  Fig. 2(a) shows representative load-unload 

stress-strain curves for two nanowhiskers with different diameters (110 and 33 nm) as well as 

subsequent loading curves to fracture. Nonlinear elastic behavior was measured to occur at 

strains as high as ~5% and stresses in excess of 4 GPa.  Some specimens displayed plastic 

deformation preceding fracture, which could be clearly distinguished from the elastic regime 

(e.g. 33 nm specimen shown in Fig. 2(a)). We note that measured fracture strengths were as high 

as 7.1 GPa (corresponding to resolved shear stresses on the {111}/ 211  slip system of ~8% of 

the shear modulus of Pd), which are near estimates of the theoretical shear strength, consistent 

with other reports of high strength in FCC nanowhiskers [21,27].  To confirm the elastic limit of 

our Pd nanowhiskers, the actuator position was fixed at various increments of strain, and load 

was measured for ~1 min hold periods, as shown in Fig. 2(b).   For holds at approximately 0.5, 

1.2, and 3.1 GPa, no clear load relaxation was measured, indicating the absence of detectable 

plastic deformation in this regime of nonlinear mechanical behavior.  Measurable load relaxation 

was only measured at stresses higher than 4 GPa, which directly preceded fracture of the sample. 

 These experiments reveal a large range of elastic strain over which both linear and nonlinear 

elasticity can be quantified. 
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FIG. 2. (a) Loading, unloading, and subsequent fracture (offset along strain axis for clarity) stress-
strain curves for two Pd NWs. Load-unload tests indicate no residual strain in NWs after unloading. 
Linear and quadratic fits (reconciled by the power law exponent shown in the inset) to the fracture 
curves are shown. (b) Stress-time data for a representative Pd NW, during which the actuator was 
held stationary, confirming elastic behavior until near the fracture stress.  

 

The linear elastic response of a material is entirely represented by the quadratic term of 

the interatomic potential energy, while nonlinear elasticity requires higher-order terms. This 

translates to the following stress-strain relationship for uniaxial loading: 

σ = Eε + Dε 2 +  (1) 

where σ is the true stress, ε is the true strain, and E and D are the second-order (Young’s) and 

third-order moduli, respectively.  Our data show a quadratic fit to sufficiently capture the 

nonlinear response until fracture (inset of Fig. 2(a)).  We note that this relationship has been used 

in evaluating the large-strain elastic response of other nanostructures such as 

graphene [14,15,28].   

The moduli E and D were directly determined for all tested Pd NWs by nonlinear least-

squares fitting of the measured tensile response to Eq. 1.  D was measured to be negative and 
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with absolute values an order of magnitude larger than E, indicating a strong elastic softening 

beyond the linear (Hookean) regime.  Most notably, both E and D were measured to be size-

dependent, with increasing absolute values with decreasing NW diameter (Fig. 3).   E was 

measured to be approximately 120 GPa for NWs larger than 100 nm, which is close to the bulk 

value of Young’s modulus in Pd for a <110> axial orientation (136 GPa) [29], while increasing 

to ~290 GPa in the 33 nm NW (Fig. 3(a)).  While the linear response at low strains was shown to 

stiffen with decreasing size, D was measured to correspondingly decrease (increasing magnitude) 

(Fig. 3(a)), revealing a more pronounced deviation from linear behavior in the smallest tested 

NWs. 

FIG. 3. (a) E and D obtained from least-
squares quadratic fitting, showing a clear 
dependence of both quantities on NW size. 
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(b) Plotting E vs. D demonstrates a linear 
correlation, suggesting that the slope b, the 
strain-expanded nonlinearity parameter, is 
an intrinsic size-independent property.  The 
inset confirms that the nonlinearity 
parameter δ is not a function of diameter 
over the tested size range.  See 
Supplemental Material at [URL] for details 
on the error analysis. 
 

That both linear and higher-order elastic constants show size-dependence is noteworthy.   

Fig. 3(b) shows E and D to be roughly linearly correlated, which suggests that an additional 

material parameter can be defined that is size-independent, and hence, representative of a bulk-

like quantity.  Such an approach can be reconciled by considering the elastic strain energy as a 

function of interatomic separation during uniaxial loading of our NWs.   Following Diao et 

al. [14], by accounting for Poisson contractions, a relationship between Eq. 1 and the strain 

energy U(ε) of a nanowire with Poisson’s ratio υ and initial volume V0 subjected to uniaxial 

tension can be expressed as:  
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where b = D/E, the so-called strain-expanded nonlinearity parameter.  Because 33 ε∂∂∝ Ub (i.e. 

related to third-order elastic constants), a constant b implies a signature of the interatomic 

behavior of a crystal corresponding to nonlinear behavior in bulk Pd.  We measure b = 

7.19±1.94, i.e. bulk Pd should elastically soften in tension along the <110> direction.  While 

experiments of bulk Pd elastic behavior at high strains are not available, molecular statics 

simulations of higher-order elastic moduli in other bulk FCC metals have been performed 

 [14,15].  Liang et al. found that in bulk Cu along the <110> direction, the instantaneous stress-

strain slope decreases (b110 =  -9.885) (agrees with our findings) as well as along <111> (b111 = -
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0.587) but increases for <100> (b100 = 4.155) [15].  A similar trend in atomistic simulations of 

bulk Au was observed by Diao et al. where the Young’s modulus along the <100> direction was 

found to decrease with compressive strain, i.e. b100 is positive [14].  Comparing our results with 

these findings, the response of the tested Pd NWs along the <110>-direction is consistent with 

predictions for the interatomic behavior of FCC metals.  As the magnitude of b is a direct 

measure of the degree of anharmonicity, one can estimate the anharmonic contribution by 

considering the relative deviation from a harmonic approximation (1st term of Eq. 2).  We write a 

dimensionless expression for the fractional anharmonic contribution to the strain energy density 

as 2 / 3 1− 2υ + b( )ε .  Using υ=0.39 and our measured value of b for Pd nanowhiskers, this value 

would be ~ 5% and ~25% for strains of 0.01 and 0.05, respectively, suggesting that 

anharmonicity plays a substantial role particularly near the fracture strain. 

Further comparisons with nonlinear elastic behavior in FCC metals can be made by 

expanding in stress rather than strain  [30]:   
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Here, nonlinearity is characterized by the stress-expanded parameter δ, which is a function of 

both second- and third-order elastic constants [4,30,31].  Using this framework, we measure δ = 

11.2±3.9 for our <110> Pd NWs (inset of Fig. 3(b)), which, to the best of the authors’ 

knowledge, is the first measurement of δ in Pd.  Nevertheless, it is still insightful to compare to δ 

values obtained in other FCC noble metals  [30–33], which are consistent in sign for each low-

index orientation (negative for <100>, positive for <110> and <111>), with the magnitude of δ110 

usually being the highest (typical values in noble metals range from ~8 to ~11). Also noteworthy 

is the qualitative agreement between these experimental studies and the simulations by Diao et 
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al. of <100>-Au and by Liang et al in Cu for all three directions [14,15].  Comparing with the 

current work, our value δ110 obtained for Pd is the largest among other FCC metals but consistent 

in sign and magnitude, suggesting a very large degree of anharmonicity.  (See Supplemental 

Material at [URL] for example comparisons). 

Having shown a direct measurement of the size-independent nonlinearity parameter in Pd 

along the <110> direction, we now turn our attention to the size-dependence of E and D.  Such 

size-dependence in E is commonly attributed to the effect of increasing surface-to-volume ratio 

in nanostructures via two separate effects.  The first is the contribution of a surface layer with 

distinct elastic properties from the bulk to the total stiffness of a nanostructure, a direct result of 

the atomic bonding configuration near a free surface [17,34,35].  In this case, the total surface 

stress along the nanowire axis is often represented as τ = τ0 + Sε, where S is the surface stiffness 

(or surface elastic modulus) and τ0 is the surface stress at zero applied strain [19,36].  This 

contribution of the surface stiffness S leading to the deviation in E from the bulk value E0 is 

estimated by (E - E0)/E0 = α(h/h0) where α is a geometric factor, h0 = |S/E0|, and h is the 

characteristic length scale of the structure [17,19].  Using surface stiffness values obtained from 

atomistic simulations [19], we calculated h for several low-energy surfaces ({100}, {110}, 

{111}, and {112}) on a <110>-NW assuming a square h x h cross-section under tension (α = 4). 

 For a 10% difference in apparent E (sufficiently large so as to be measured in our experimental 

setup), h < 4 nm, which is well below where our Pd NWs begin to show deviations from bulk 

elastic behavior. We note that other experimental and atomistic simulation studies of nanowires 

also show deviations in E due to surface stiffness at similarly small length scales [36–39].  It is 

important to recognize that this model assumes a linear elastic response of miscoordinated atoms 

residing at the surface. Also, to account for changes in stiffness in perfectly coordinated atoms, 
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the surface must be able to affect the response of the fully coordinated core atoms.  This can be 

accomplished by way of a second effect, namely, via surface-stress-induced 

relaxations [15,40,41].  Changes in bond lengths near the surface can result in large values of τ0, 

which in equilibrium must be balanced by stresses in the material core [19,36,40].  Surface stress 

effects on the elastic response of nanowires have been extensively modeled [36,37,39,42], but 

the core stress is often assumed to exhibit linear elastic response.  Both Diao et al. and Liang et 

al. have found in their simulations that the variations in E with decreasing size in Au and Cu 

NWs, respectively, can be attributed to higher-order elastic behavior, arising from a surface 

stress-induced residual stress state along the axial direction of the wire [14,15]. Compressive 

residual core strains > 0.01 sufficiently shift the initial stress state and thus the apparent E, giving 

rise to size-dependent elastic behavior.  Since we have determined the E and b values for our Pd 

NWs, we can similarly estimate the residual axial core strain εr by using the expression εr = 

(E/Ebulk - 1)/2b (Fig. 4).  This simple approach does not take into account the effects of the 

surface in the transverse directions, but it does illustrate the significant role the surface may play 

in evaluating the yield and fracture strength in FCC metal nanostructures. 

 

FIG. 4. Estimation of relaxation strain εr along the NW axis.  The provided inset shows 
increasingly compressive relaxation strains for NWs with smaller diameters.  The bulk curve for 
Pd is plotted using the relation in Eq. 1 with D/E = -7.19.  The anomalous points indicating 
positive εr result from calculations with E values near the bulk value.  
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In conclusion, we have directly measured nonlinear elasticity in <110> Pd NWs for 

diameters between approximately 30 and 110 nm and attribute this response to lattice 

anharmonicity characterized by the nonlinearity parameter δ.  This quantity, and likewise its 

strain-expanded counterpart b, show no size-dependence, while the apparent second- and third- 

order elastic moduli E and D vary with size.  The changes in E are attributed to large 

compressive strains along the axis of the core and highlight the importance of higher-order 

elastic behavior in evaluating surface stress effects.  The correlation between D and E also 

suggests that the size-dependence of the third-order elastic modulus is also related to the 

nonlinear elastic response of the bulk-like core.  Irrespective of the difference in length scales, 

the measured nonlinearity of Pd is in general agreement with both atomistic and experimental 

studies on bulk specimens of other FCC transition metals.  This anharmonic behavior not only 

affects elastic behavior (including temperature dependence) but also is expected to play a 

significant role in the plastic deformation of defect-free nanostructures.  The large activation 

entropy contribution to the rate of dislocation nucleation in defect-free FCC metals has been 

shown to be caused by anharmonic effects such as thermal expansion and thermal softening.  By 

excluding anharmonic effects, calculations for the nucleation rate based on harmonic 

approximations in transition state theory can be off by several orders of magnitude at room 

temperature, thus affecting predictions of material strength  [43,44]. Our results provide a novel 

method for characterizing size-independent anharmonic bulk properties, not accessible by 

conventional methods, via size-dependent elastic behavior in defect-free, high-strength 

nanostructures.  The implications of our results extend beyond material elasticity, as the nature of 
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interatomic bonding and vibrations affect mechanical, thermal, electronic, and physical 

properties of materials known to be strongly influenced by lattice anharmonicity. 
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