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Marginal stability constrains force and pair distributions at Random Close Packing
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The requirement that packings of frictionless hard spheres, arguably the simplest structural glass,
cannot be compressed by rearranging their network of contacts is shown to yield a new constraint
on their microscopic structure. This constraint takes the form a bound between the distribution of
contact forces P (f) and the pair distribution function g(r): if P (f) ∼ fθ and g(r) ∼ (r−σ0)

−γ , where
σ0 is the particle diameter, one finds that γ ≥ 1/(2 + θ). This bound plays a role similar to those
found in some glassy materials with long-range interactions, such as the Coulomb gap in Anderson
insulators or the distribution of local fields in mean-field spin glasses. There is ground to believe
that this bound is saturated, yielding a mechanism to explain the avalanches of rearrangements with
power-law statistics that govern plastic flow in packings.

PACS numbers: 63.50.-x, 63.50.Lm, 45.70.-n, 47.57.E-

Amorphous materials are perhaps the simplest exam-
ple of glasses, in which the dynamics is so slow that ther-
mal equilibrium cannot be reached. In these systems
properties are history-dependent, and configurations of
equal energy are not equiprobable. What principles then
govern which part of the configuration space is explored,
for example when a pile of sand is prepared? One ap-
proach was proposed by Edwards in the context of gran-
ular matter [1], and is based on the hypothesis that all
mechanically stable states are equiprobable. Another line
of thought assumes that the configurations generated by
the dynamics are linearly stable, but only marginally
[2, 3]: the microscopic structure is such that soft elas-
tic modes are present at vanishingly small frequencies.
This view can explain [2–4] in particular the singularities
occurring in the coordination number and in the elastic-
ity of amorphous solids made of repulsive particles near
the unjamming threshold [5–7] where rigidity disappears.
Despite these successes, the hypothesis of linear marginal
stability yields an incomplete insight on the non-linear
processes occurring in amorphous materials, which are
critical to understand plasticity, thermal activation or
granular flows [7, 8]. When interactions are short-range
one key source of non-linearity is the creation or destruc-
tion of contacts between particles [9, 10]. Combe and
Roux have observed numerically [9] that such rearrange-
ments occur intermittently, in bursts or avalanches whose
size is power-law distributed, a kind of dynamics referred
to as crackling noise [11].

Interestingly some glassy systems with long-range in-
teractions display such dynamics, in particular Coulomb
glasses [12] and mean-field spin glasses [13]. In both
cases the requirement of stability toward discrete exci-
tations (flipping two spins or moving one electron) leads
to bounds on important physical quantities: Efros and
Shklovskii showed that the density of states in a Coulomb
glass must vanish at the Fermi energy [14], implying the
presence of the so-called Coulomb gap. Thouless, An-
derson and Palmer [15] demonstrated for mean-field spin

glasses that the distribution of local fields must vanish
at least linearly at low fields. In these systems the near
saturation of the stability bound strongly affect physical
properties, and is responsible for the crackling noise.

In this letter I argue that the same scenario holds in
packings of hard frictionless spheres. I derive a stability
bound toward discrete excitations, associated with the
opening and the closing of contacts. This bound con-
strains the pair distribution function g(r) and the distri-
bution P (f) of the magnitude of contact forces f between
particles. The presence of weak forces is found to desta-
bilize the system, whereas the abundance of pairs of par-
ticles that are very close to each other but not touching
stabilizes it. If σ0 is the particle diameter and g(r) and
P (f) are assumed to obey power laws, g(r) ∼ (r− σ0)

−γ

and P (f) ∼ fθ, I find that stability implies γ ≥ 1/(2+θ).

There is ground to believe that generic contact net-
works of amorphous frictionless spheres are marginally
stable, as previous observations, although incomplete,
are consistent with the saturation of this bound.
Marginality toward avalanches of contact changes may
thus be the principle governing phase space exploration
in the simplest amorphous solid. These results build a
link between structural glasses and glasses with frozen
disorder [16, 17] where theoretical progress on avalanches
has recently been made [18], thus providing a handle to
investigate the rewiring of the contact network, a very
hard question of key importance for flow and plasticity.
Finally, these results lead to a novel perspective on the
microscopic structure of packings, and suggest in partic-
ular that the much studied distribution of force [19] is
controlled by subtle correlations in the structure asso-
ciated with network stability, that are not included in
previous theoretical descriptions [19, 20].

I consider a packing of N hard frictionless particles of
diameter σ0, in spatial dimension d. The packing is con-
tained in a cubic box of variable volume V made of rigid
walls, and is formed by pushing particles together by re-
ducing the box size, so as to apply a specified pressure
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p. Microscopically, the boundaries apply external forces
~Fi on all the particles i in contact with it. Mechanical
stability requires that no floppy modes exist, apart from
global translations and rotations. Floppy modes are col-
lective motions of the degrees of freedom of the system
(that include the Nd degrees of freedom of the particles
and changes in the box size) for which the distances be-
tween objects in contact (including both particles and the
box) are fixed. If such a mode existed, the system would
flow along it. Rapidly quenched, or poly-disperse pack-
ings of hard frictionless spherical particles are isostatic

[3, 5, 7, 21–23]: the average number of contacts between
particles, the coordination number z, is just sufficient to
guarantee mechanical stability and to avoid the presence
of floppy modes, corresponding to z = zc = 2d. It can
be shown that for any finite poly-dispersity, this condi-
tion is necessary to ensure no overlaps between particles
[21–23].
In an isostatic system the removal of any contact leads

to the creation of one floppy mode. Floppy modes can
be generated as follows: two particles 1 and 2, forming
a contact labelled 〈12〉, are pushed apart while all the

other contacts remain closed. I denote by δ ~R
〈12〉
i (s) the

displacement of particle i following the opening of the
contact 〈12〉 by a distance s. This displacement field is
uniquely defined, because only one floppy mode appears
when a contact is broken, and exists for s sufficiently
small, so as to ensure that no new contacts are formed
in the system. Below I shall make the four assumptions
(a-d) on floppy modes in random packings of frictionless
spheres: (a) floppy modes extend in general in the entire
system, and displace an extensive number of particles, as
observed numerically [24]. If

Bkl = lims→0

∑

i

[δ ~R
〈kl〉
i (s)]2/(Ns2), (1)

then B = limN→∞〈Bkl〉 > 0, where the average is made
on all contacts. Note that this property does not hold
for soft compressed particles for which z > zc: in that
case the response to a local strain decays with distance
as a power-law in the far field, as expected from elas-
ticity. However under decompression z → zc and the
response becomes more and more extended [25]. Theo-
retically it can be shown that when z−zc ∼ 1/N , pushing
two particles apart leads to displacements whose ampli-
tude do not decay with distance [3], strongly supporting
that this result holds for floppy modes when z = zc.
(b) The argument below focuses on floppy mode asso-
ciated with contacts carrying a weak force. Although
limN→∞〈Bkl〉 > 0 for a typical contact, it might not
hold for the weakest contacts, and we may assume more
generally that B(f) ≡ 〈Bkl〉f ∼ f δ, where the average
is on all contact 〈kl〉 whose force is f . I shall present
the argument for the simplest assumption δ = 0, the ex-
tension to finite δ is straightforward and reported below.
(c) For a floppy mode, the relative displacement between

two adjacent particles is of order of the displacement of
either particle. This property was checked numerically
for the lowest-frequency modes of isostatic packings of
soft particles [2], and is supported by the following ar-
gument. In a compressed packing of soft particles with
z > zc, if two particles are moved apart, property (c)
is true only for particles close to the chosen pair, and
violated in the far field where the strain becomes much
smaller than the displacement. According to hypothesis
(a) however, the properties of the displacement field of
a floppy mode are independent from the distance to the
chosen pair, supporting that relative and absolute dis-
placements are comparable in the entire system. (d) The
response to a force dipole of amplitude F applied on two
non-contacting particles extends to the entire system. In
particular, the resulting change of amplitude of contact
forces between particles is of order F everywhere. This
property can be derived formally from properties (a) and
(c) [26], using the existence of a duality between floppy
modes and force propagation [22, 27], and is supported
by numerics [25].

A packing of hard particles has an infinite energy if
particles overlap, and no energy otherwise. We shall fo-
cus on non-overlapping configurations, where the relevant
energy is simply pV , which is finite. I shall argue that the
stability of a packing against compression leads to con-
straints on the packing geometry. Consider the floppy

mode δ ~R
〈12〉
i (s). The constraint that the change of dis-

tance δr〈ij〉 between particles in contact is null, except
for the contact 〈12〉, can be expressed at the second or-
der using Pythagoras theorem as:

∀ 〈ij〉 6= 〈12〉, δr〈ij〉 = (δ ~R
〈12〉
j (s)− δ ~R

〈12〉
i (s)) · ~n〈ij〉

+
[(δ ~R

〈12〉
j (s)− δ ~R

〈12〉
i (s)) · ~n⊥

〈ij〉]
2

2σ0
+ o(s2) = 0 (2)

where ~n〈ij〉 is the unit vector going from i to j in the

initial configuration, and the notation ·~n⊥
〈ij〉 indicate the

projection onto the space orthogonal to ~n〈ij〉.

We now compute the change of volume associated with

the displacement field δ ~R
〈12〉
i (s). Force balance in the

unperturbed state can be written:

∀i, ~Fi −
∑

j(i)

f〈ij〉~n〈ij〉 = 0 (3)

where the sum is on all particles j(i) in contact with i,
~Fi is the force exerted by the wall on particle i (and is
thus zero for most of the particles), and f〈ij〉 > 0 is the
magnitude of the force in the contact 〈ij〉. Multiplying

Eq.(3) by any displacement field δ ~Ri and summing on all
particles leads to the virtual work theorem:

∑

i

~Fi · δ ~Ri +
∑

〈ij〉

(δ ~Rj − δ ~Ri) · ~n〈ij〉f〈ij〉 = 0, (4)
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where the second sum is made on all contacts. In our
system external forces only stem from the boundaries,
and the associated work is

∑

i
~Fi · δ ~Ri = −pδV . Using

this result, together with Eq.(2) and Eq.(4) applied to

the floppy mode δ ~R
〈12〉
i (s), one obtains:

pδV (s) = sf〈12〉 − C + o(s2) (5)

where

C =
∑

〈ij〉6=〈12〉

f〈ij〉
[(δ ~R

〈12〉
j (s)− δ ~R

〈12〉
i (s)) · ~n⊥

〈ij〉]
2

σ0
. (6)

According to the properties (a,c), [(δ ~R
〈12〉
j (s)−δ ~R

〈12〉
i (s))·

~n⊥
〈ij〉]

2 ∼ s2. Thus C = s2AN〈f〉/σ0, where 〈f〉 is the
average contact force and A is a constant of order one.
Eq.(5) becomes:

pδV (s) = sf〈12〉 −
AN〈f〉s2

σ0
+ o(s2). (7)

Eq.(7) is plotted in Fig.(1). Since the inter-particle
potential is purely repulsive, f〈12〉 > 0 for all 〈12〉, im-
plying that for sufficiently small s opening a contact al-
ways increases V . However the quadratic term is always
destabilizing. A denser state will thus be generated if
the contact 〈12〉 can be opened up to a distance s > s∗

without a new contact being formed, with:

s∗ ∼
f〈12〉

〈f〉

σ0

N
, (8)

as indicated in the right panel of Fig.(1). The initial
configuration is stable however if a new contact is formed
at some sc < s∗, as motion along the floppy mode beyond
sc is then forbidden.

FIG. 1. Energy change pδV after opening a contact 〈12〉 by
a distance s. sc indicates the distance at which a new con-
tact is formed, and motion along the considered floppy mode
becomes impossible. If sc < s∗ (Left) no denser state can
be obtained by opening the contact 〈12〉 (note, however, that
a looser but still metastable configuration can be obtained if
sc is larger than the distance smax at which pδV is a maxi-
mum). If sc > s∗ (Right), a denser, more stable state can be
generated.

According to Eq.(7), the most stringent constraint on
stability corresponds to the opening of contacts with the
weakest forces. I assume that the distribution of contact
force P (f) follows P (f) ∼ fθ/〈f〉θ+1 at low forces, where
the term 〈f〉θ+1 ensures proper normalization. I define
the typical smallest contact force fmin in a system with
Nc ≡ zN/2 = Nd contacts as the force magnitude for
which there is in average one smaller contact force in the
system:

∫ fmin

0

P (f)df ≡ 1/Nc ∼ 1/N (9)

leading to fmin ∼ 〈f〉N−1/(1+θ). This estimation as-
sumes that forces can be treated as independent vari-
ables, which I expect to be approximatively true. Using
this force in Eq.(8), which applies to contact with low-
forces according to (b), one finds that it is sufficient to
open the contact with the weakest contact force by an
amount s∗min that satisfies:

s∗min/σ0 ∼
fmin

N〈f〉
∼ N−(2+θ)/(1+θ), (10)

to generate a denser packing.
In a stable packing a new contact must be formed for

some sc < s∗min. We now estimate the value of sc in
terms of the pair distribution function g(r). The first
contact to form will correspond to particles that were
almost touching in the initial configuration (s = 0). We
denote by hmin the typical smallest separation between
particles that are not in contact. According to properties
(a,b,c), the relative motion of nearby particles in a floppy
mode is of order s. Thus the first contact will be formed
for sc ∼ hmin, which can be expressed in terms of the
pair distribution function:

∫ σ0+hmin

σ0

g(r)dr ≡ 1/Nc ∼ 1/N (11)

Assuming that g(r) ∼ (r−σ0)
−γ , one finds that sc/σ0 ∼

hmin/σ0 ∼ N−1/(1−γ).
The stability conditions sc < s∗min thus implies that

N−1/(1−γ) < N−(2+θ)/(1+θ), or equivalently:

γ ≥
1

2 + θ
(12)

which is my main result. For δ 6= 0 the same argument
leads to γ ≥ (1− δ/2)/(2 + θ − δ/2).
I now show that if the inequality (12) is violated, open-

ing the contact with one of the smallest contact forces
would lead to a giant avalanche that restructures an ex-
tensive number of contacts in the system. Let us de-
note by 〈34〉 the contact that closes at s = sc. I seek
to estimate the contact force f〈34〉 that appears in this
contact when it closes. By symmetry, all the results we
have derived when the contact 〈12〉 was opened and 〈34〉
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was closed also apply to the newly obtained configura-
tion if 〈34〉 is re-opened and 〈12〉 is re-closed. In par-
ticular the relation f〈12〉 = ∂(pδV (s))/∂s|s=0 becomes
f〈34〉 = ∂(pδV (s′))/∂s′|s′=0, where s′ is the distance by
which the contact 〈34〉 is opened. One has ∂s′/∂s ≡ −D
where D is a positive constant of order one by symmetry.
Thus f〈34〉 is readily obtained by differentiating Eq.(7) at
sc, and leads to:

f〈34〉 = D

(

AN〈f〉sc
σ0

− f〈12〉

)

(13)

Using Eqs.(10) and (13) in the case where 〈12〉 is the
weakest contact, i.e. f〈12〉 = fmin, one sees that the
violation of inequality (12), which implies sc >> s∗min,
lead to the condition f〈34〉 >> fmin.
I now argue that the creation of a new contact with a

force much larger than the typical minimal forces fmin

can trigger an avalanche of infinite size in the thermo-
dynamic limit. Closing the contact 〈34〉 is equivalent to
imposing an external dipole of forces - just before they
touch- on the two particles 3 and 4 forming this contact,
of magnitude ~F3 = − ~F4 = f〈34〉~n34. The response to
such a force dipole, according to property (d), changes
the contact forces throughout the system, by some ran-
dom amount of order f〈34〉. Since f〈34〉 is much larger
than the smallest forces in the system, many contact
forces become negative when the contact 〈34〉 is formed.
A negative contact force would correspond, in the repre-
sentation of Fig(1), to a negative slope at s = 0, leading
to an instability where the contact opens. The opening of
these contacts will lead in turn to new contacts forming,
themselves generating some significant noise in the values
of contact forces, and triggering new openings of contact.
Under the assumptions that gaps and forces are indepen-
dent variables, such a dynamical process can stop only
when inequality (12) is satisfied, requiring an extensive
rearrangements of contacts. It is likely that something of
this sort takes place each time a packing of hard particles
is prepared.
Discussion: Imposing the stability of the contact net-

work leads to an inequality between the distribution of
forces and the pair distribution function in packings,
Eq.(12). In glasses with long range interactions such
a stability bound exists, it is saturated both the equi-
librium state [15] and in non-equilibrated configurations
[28, 29] in spin glasses, and nearly saturated in the
Coulomb glass [30, 31]. In the case of random close pack-
ings, thermal equilibrium is not achieved, and the expo-
nent θ and γ may depend on the system preparation.
Empirically, for isotropic packings obtained via decom-
pression of soft particles it is found that γ ≈ 1/2 [32, 33],
whereas for packings obtained via compression of ther-
mal hard particles γ ≈ 0.4 [34] (in the later measure-
ment however rattlers, corresponding to a few percent of
the particles that are not jammed, were not taken into
account). On the other hand P (f) has been extensively

studied in the granular matter literature, but with little
precision at low force. One accurate measurement of θ
was made in anisotropic jammed packings [35] (where the
present argument should also hold), and yields θ = 0.2.
γ was not measured in that case however, and the satu-
ration of Eq.(12) would correspond to γ = 0.44, a value
similar to what is observed in isotropic packings. Thus
the existing measurements are consistent with the non-
linear marginal stability of packings, although more ac-
curate observations are crucial to test this hypothesis.

Furthermore, marginal stability is a natural explana-
tion for the observation that the response to an applied
shear stress displays jumps of strain δǫ, which follow a
distribution P (δǫ) ∼ δǫ−1.46 [9]. Such power-law be-
havior indicates that the the contact network is critical.
Criticality can be obtained by fine-tuning parameters,
such as in the mean-field ferromagnet in random field [36]
(whose exponent 3/2 is interestingly close to the present
one), or via some kind of self-organized criticality. The
marginal stability proposed here is consistent with the
second scenario. Along this line of thought, when a pack-
ing is formed the dynamics consists of large avalanches of
contacts rearrangements. When extensive avalanches are
not possible anymore, the dynamics stops rapidly, ensur-
ing that the system remains close to critical state where
the packing is marginal. This scenario could be checked
numerically by opening the weakest contacts of packings,
in order to test for the presence of avalanches potentially
leading to denser packings.

Finally, I have focused on hard frictionless spherical
particles, which can describe accurately emulsions [37].
Often however these assumptions do not apply: in gran-
ular matter particles are not perfectly spherical, there is
friction and particles can be deformed to some extent.
These features move the system away from isostaticity:
for example elliptic particles are hypostatic and present
floppy modes [38, 39], whereas friction or softness make
the system hyperstatic. In both cases, one expect these
systems to behave like isostatic ones below a length scale
l∗ that diverges near isostaticity [40], suggesting that the
proposed description of the contact network dynamics
applies on this mesoscopic length scale. One challenge
for the future is to connect the present approach to long
wavelength phenomena, for example the emergence of
avalanches of localized plastic events in soft glasses or
the apparition of shear bands in granular matter.
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