
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nanoparticle Effect on the Dynamics of Polymer Chains and
Their Entanglement Network
Ying Li, Martin Kröger, and Wing Kam Liu

Phys. Rev. Lett. 109, 118001 — Published 13 September 2012
DOI: 10.1103/PhysRevLett.109.118001

http://dx.doi.org/10.1103/PhysRevLett.109.118001


LQ13572

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Nanoparticle effect on the dynamics of polymer chains and their entanglement network
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We explore the dynamics of entangled polymer chains embedded into nanocomposites. From primitive path
analysis, highly entangled polymer chains are found to be significantly disentangled during increment of the
volume fraction of spherical non-attractive nanoparticles (NPs) from0 to42%. A critical volume fraction,φc =
31%, is found to control the crossover from polymer chain entanglements to ‘NP entanglements’. While below
φc, the polymer chain relaxation accelerates upon filling, above φc, the situation reverses: Polymer dynamics
becomes geometrically constrained upon adding NPs. Our findings provide a microscopic understanding of the
dynamics of entangled polymer chains inside their composites, and they offer an explanation for the unusual
rheological properties of polymer composites.
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In polymer nanocomposites (PNCs), fillers with dimen-
sions on the nanometer scale added into polymers offer a huge
enhancement on the mechano–viscoelastic properties of poly-
mers. Understanding the nanoparticle (NP) effect on the poly-
mer chain dynamics has a broad impact on determining the
shear elasticity and viscosity of PNCs. Even though extensive
investigations have been done to explore chain dynamics in-
side PNCs, widely different and often conflicting results are
reported. On the small scale of local chain dynamics, both
experimental and computational results demonstrated thata
mobility gradient existed in the direction of NPs [1–3]. On
the other hand, the NPs show no influence on local segmental
dynamics of the chains adjacent to silica particles, compared
with motions of the bulk chains [4].

More recently the dynamics of entangled polymer chains in
PNC had been explored by neutron spin echo (NSE) experi-
ments [5], from the initial Rouse dynamics to entanglement
controlled motion, by filling hydrophobically modified (non-
attractive) silica particles into a poly(ethylene-alt-propylene)
(PEP) matrix. Authors reported several key findings: (i) the
polymer behaves Gaussian even at high filler volume frac-
tions,φ, (ii) the fillers are found to have no influence on the
basic Rouse relaxation rate of PEP, (iii) the effective lateral
confinement length or apparent tube diameter of PEP is de-
creasing with increasingφ, and (iv) a crossover from polymer
chain entanglements to ‘NP entanglements’ (chain motion is
hindered by NPs) is observed, with the criticalφc determined
to be 35% [5]. At the same time, both contour length fluctua-
tion (CLF) and constraint release (CR) effects are suppressed
by these NPs [6]. However, a rigorous link between the poly-
mer chain dynamics and its entanglement status inside PNCs
is still missing.

In this letter, we performed large scale isobaric molecular
dynamics (MD) on a conventional finite-extensible non-linear
elastic (FENE) spring model for polymer melts [7]I, filled by
spherical non-attractive NPs of diameterD, with φ ranging
from 0% to 42% (Fig. 1). Our normal mode analysis, prim-

itive path (PP) and dynamic structure factor results on this
simple model support the above key findings (i), (iii) and (iv).
We findφc = 31%, exactly matching the percolation volume
fraction of random spherical NPs in 3D [8]. While belowφc,
the normal mode relaxation can be accelerated by NPs due
to the disentanglement behavior of polymer chains, adding
NPs aboveφc slows down the relaxation processes. The basic
Rouse relaxation rate is thus greatly affected by NPs. To our
knowledge, the present study provides the first observation
of disentanglement behavior within highly entangled polymer
chains filled with NPs. Moreover, whenφ < φc, the ob-
served reduction of disentanglement timeτd is linearly pro-
portional to the reduction of entanglements per chain〈Zkink〉
or tube diameter〈app〉

−2, in agreement with the tube the-
ory [9] which also indicates the polymer chain entanglement-
dominated regime. However, ifφ > φc, such a relationship
will be broken down, due to the ‘NP entanglements’.

High molecular weight polymers interpenetrate each other
in melts; their dynamical behavior is controlled by quasi-
topological constraints: chain connectivity and uncrossabil-
ity. The constraints (entanglements) are commonly assumed
to be able to effectively restrict the lateral motion of individ-
ual polymer chains to a tube-like region. Within this picture
polymer chain travels back and forth, i.e. reptate, along the
centerline of the tube-like region, defined as primitive path
(PP). By applying the Z1 code [10, 11] on our fully equili-
brated systems, we obtain the PP of chains inside PNCs under
both the ‘phantom’ or ‘frozen’ particle limits [7]II . The ob-
tained mean PP length〈Lpp〉, tube diameter〈app〉 as well as
the entanglement number per chain〈Zkink〉 under the ‘phan-
tom particle limit’ are listed in Tab. I.

Upon increasingφ from 0% to 42%, the chains gradu-
ally disentangle;〈Zkink〉 decreases from10.07 down to6.25.
Snapshots of our PNCs and conformational analysis includ-
ing the anisotropy of the tensor of gyration [7]I supports
the picture of gradually isolating chains, where an increas-
ing amount of NP surface area helps stretching the chains
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FIG. 1: (a)-(c) Snapshots of simulated systems at three different volume NP concentrations. Each chain has a randomly selected color,
including black. NP effect on the distributions of (d) PP lengthLpp and (e) tube diameterapp. Solid lines in (d) and (e) are fitted Gaussian and
beta functions, respectively.

[12]. The observed disentanglement is in qualitative agree-
ment with behavior reported for polymer chains inside cylin-
drical nanopores [13]. With the FENE chains disentangled,
〈Lpp〉 and 〈app〉 are reduced and enlarged, respectively, as
shown in Tab. I. The distributions ofLpp andapp generat-
ing these averages are given in Fig. 1. The two types of dis-
tributions can be well fitted by Gaussian and beta functions,
respectively, indicating that the chains still preserve Gaussian
conformations at highφ. Within the tube model [14], theτd is
known to be proportional to〈Zkink〉 or 〈app〉

−2 [9]. If we ig-
nore additional mechanisms accompanying geometrical con-
finement induced by NPs, the dynamics of chains should thus
get accelerated with increasingφ, since their〈Zkink〉 values
are below the ones we find in the bulk. However, the geomet-
rical effect of NPs plays an important role, whenφ > 31%.
We set out to demonstrate, that the dynamics of FENE chains
is accelerated up to a critical concentration, due to a reduction
of 〈Zkink〉, and subsequently slowed down due to geometrical
confinement.

The measured normal mode correlation functions of poly-
mer chains at differentφ we can capture by a stretched ex-
ponential, leaving us with a set of relaxation timesτ∗p and
stretching parametersβp (Fig. 2a). The fits do well in de-
scribing the data and get strongly non–exponential for modes
3 < p < 12, as theβp is far away from unity (see [7]IV ).
The stretching is expected since our polymer chains, as we
already know from the PP analysis, are well-entangled. It is
interesting to see that the first and second modes atφ = 31%
decays faster than that for both theφ = 0% and37% systems,
indicating the dynamics of chains that firstly accelerates,and
later slows down with increasingφ. Whenφ is very large,
φ = 42%, the dynamics of chains are completely dominated
by NPs: all the modes are slowed down. Theτ∗p with p = 20
for filler systems withφ = 42% is about58% larger than that
of the unfilled system, which signifies extremely strong geo-
metrical confinement due to the NPs.βp, however, seems to
be remain unaffected byφ, because our polymer chains basi-
cally exhibit Gaussian conformational statistics at allφ. The
data more or less collapse onto the same curve. At the small-
est length scales (largep values),βp ≈ 0.7, followed by a
minimum of height 0.5 at aroundN/p ≈ 55, and a further

increases to≈ 0.8 at the largest scale (p = 1). Although the
chains gradually disentangle during NP–filling (Tab. I), itis
astonishing to see that all PNCs share the location of their
minimum atN/p ≈ 55, which is in value comparable to the
entanglement lengthNe ≈ 50 for the unfilled system [17].

The short time decay behavior of the highest modes (p =
20) provides us with a bead friction coefficientζ, the relax-
ation rateW [7] IV , and the Rouse timeτR (Tab. I). For the
unfilled systems we findζ = 25 ± 0.54, well in accord with
the obtained value (25 ± 2) for N > 100 [16]. If φ < 10%,
the NP effect onζ is negligible. Forφ ≥ 20%, we observe an
increment ofζ, i.e. 27 ∼ 32 asφ increases from20% to 42%
[7]. As noted already, the chains are stretched, isolated and
disentangled [7], but geometrically hindered by NPs, whenφ
is very large. Therefore,ζ can be gradually increased upon
filling. As a result, the Rouse timeτR uprises withφ, contrary
to the experimental finding of Schneideret al.[5], who did not
observe a general slowing down of the basic Rouse modes.

Following the discussion of Padding and Briels [18], the
disentanglement timeτd we estimate from the long time
asymptotic behavior of the first normal mode (p = 1). At
time t = τd, the first normal mode should have decayed to
1/e of its original value att = 0 [18](see [7]IV ). Since our
longest chain length is only about 8∼10 times of the entan-
glement lengthNe, the obtainedτd should be very close to the
real disentanglement time, as discussed by Padding and Briels
[18]. From the fitted results (Fig. 2a), we thus have direct ac-
cess to the variation ofτd with φ (Tab. I). Belowφ = 31%, τd
monotonically decreases with increasingφ. However, above
φ = 31%, τd is suddenly much larger than that of pure chains
(φ = 0%), and up to about60% larger atφ = 42%. Clearly,
the normal modes of polymers can be affected by the NPs,
which appears unexpected in view of Schneideret al. [5], but
is in accord with previous MD simulation results [19]. It had
been established that the attractive polymer–NP interactions
slow the relaxation, while the non-attractive polymer–NP in-
teractions give rise to an increased rate of relaxation [20,21].
These observations receive an interpretation through our find-
ings on theτd of chains inside their PNCs (φ < 31%).

The effect of NP concentration on〈Zkink〉, τd, and their re-
lationship is highlighted by Fig. 2b. It is interesting to see that
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φ M MNP L 〈R2

ee〉
1/2 〈R2

g〉
1/2 W ζ τR/10

4 τd/10
4 〈Lpp〉 〈app〉 〈Zkink〉

0% 212 0 50.0 29.280a,b 11.856a 0.071 25 35.71 261.58 72.612b 11.866b 10.065b

5% 195 12 49.9 28.946 11.884 0.072 25 35.09 272.43 72.721 11.499 9.993

10% 178 24 49.8 29.004 11.928 0.072 25 35.09 244.53 70.269 11.942 9.467

21% 144 48 49.5 29.292 12.040 0.066 27 38.46 236.93 69.147 12.456 8.922

31% 110 72 49.3 28.921 11.786 0.056 32 45.53 199.56 63.932 13.088 7.632

37% 93 84 49.2 29.737 12.162 0.056 30 45.39 321.12 61.942 14.262 6.987

42% 132 165 58.8 31.372 12.648 0.051 30 49.23 430.53 61.535 16.003 6.252

TABLE I: Simulated systems. Volume fractionφ of NPs of diameterD = 10, number of polymer chains,M , number of NPs,MNP, simulation
box size,L. Results obtained for end-to-end distance,〈R2

ee〉
1/2, radius of gyration,〈R2

g〉
1/2, relaxation rate,W , bead friction coefficient,ζ,

Rouse time,τR, disentanglement time,τd, PP length,〈Lpp〉, tube diameter,〈app〉 ≡ dtube, number of entanglements per chain,〈Zkink〉. All
the FENE chains have the lengthN = 500 and the polymer bulk number density is constant at0.85 [7] I. All quantities given in reduced LJ
units. The tube diameter is〈app〉 = 〈R2

ee〉/〈Lpp〉 [15]. 〈Lpp〉, 〈app〉 and〈Zkink〉 are obtained from the ‘phantom particle limit’. See [7]III for the
details.a,b Results for pure melts (φ = 0%) confirm previous works [16, 17].
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FIG. 2: (a) Normal mode analysis [7]IV results for (top) reduced relaxation timesτ∗

p p
2/N2 and (bottom) stretching parametersβp correspond-

ing to the first twenty modes of FENE chains with different NP volume fractionsφ. (b) Reduced disentanglement timeτd vs. reduced number
of entanglements per chain〈Zkink〉 for PNCs with differentφ. Belowφc = 31%, theτd is found to be linearly proportional to〈Zkink〉, which
indicates the ‘polymer entanglements’-dominated regime [9]. Beyondφc = 31%, the〈Zkink〉 continues diminishing whileτd increases withφ,
characterizing the ‘NP entanglements’-dominated regime.(c) Characteristic confinement length of FENE chains vs.φ, compared with experi-
mental results for PEP polymers (inset, from Ref. [5]).dapp is the phenomenological/apparent tube diameter fromS(q, t)/NSE measurements.
dgeo is the calculated geometrical confinement length.dtube is the topological tube confinement, or the tube diameter〈app〉 obtained from PP
analysis. The solid lines guide the eyes.

the linear relationship between〈Zkink〉 andτd holds for rel-
ative amounts [9], whenφ < φc; while, such a relationship
will break down forφ > φc, due to ‘NP entanglements’. In-
line with the〈Zkink〉 behavior, we also find thatτd ∝ 〈app〉

−2

for the reduced quantities whenφ < φc (results not shown).
With PP analysis and normal model results at hand, we can
conclude that there is a crossover aroundφc = 31%, which
indicates the transformation from chain entanglements to ‘NP
entanglements’. To be discussed in the following part, the NPs
are very small and cannot contribute to an entanglement mesh
of polymer chains. That is the reason whyτd ∝ 〈Zkink〉 when
〈Zkink〉 is given by the ‘phantom particle limit’.

Based on a mean field approach, Schneideret al. [5]
developed a simple relationship1/dνapp(φ) = 1/dνtube(φ) +
1/dνgeo(φ) with exponentν = 2, wheredtube ≡ 〈app〉 is the
topological tube diameter as given in Tab. I;dgeo is the cal-
culated geometrical confinement length (see [7]III ). A phe-
nomenological ‘apparent’ tube diameterdapp can be obtained

through the NSE experiments or the coherent single chain dy-
namic structure factorS(q, t) [7]V. With the values ofdapp,
dtubeanddgeo at hand, the crossover from chain entanglements
to ‘NP entanglements’ for PEP chains with silica NPs can be
determined to be around 35% (inset of Fig. 2c). Whiledapp

decreases,dtube increases with increasingφ, inline with the
proposed crossover from chain entanglements to ‘NP entan-
glements’ [5].

In PNCs, there are two important factors constraining the
motion of polymer chains: one is the topological constraints
or entanglements, which is reflected by the〈app〉 or 〈Zkink〉
as shown in Tab. I; the other is the geometrical confinement
length induced by NPs, which can be understood through the
void distance distribution function of these NPs [5]. We eval-
uated this distribution [7]III . With φ increasing from21%
to 42%, the void distance between two NPs dramatically de-
creases from6.26 to 2.87. As a result, the dynamics of chains
at φ = 42% is tremendously slowed down (Fig. 2b). At the



4

highestφ, the void distance is roughly half ofdapp (6.78), in-
dicating that the chains are not completely hindered in their
motion. Caiet al. [22] have studied the mobility of non-sticky
NPs in polymer liquids. They found that NPs can diffuse more
rapidly than polymer chains, when the NP size is small com-
pared withdtube of bulk polymer chains [22]. In our case, the
NP diameter is10 < dtube ≈ 12 for the pure system. There-
fore, the NPs move quickly, cannot contribute to an entangle-
ment mesh and assist the anormal diffusion of chains at high
φ (see [7]IV ). That is also the reason why we observe a large
value ofdapp at 42%. Yamamoto and Schweizer [23] recently
elaborated on this phenomenon using a statistical dynamical
theory, which also supplies a good explanation for the viola-
tion of the hydrodynamic Stokes–Einstein diffusion law fora
spherical NP in entangled polymer melts. In the experiments
of Schneideret al., the NP diameter is about17.0±0.2nm, i.e.,
much larger than the tube diameter of PEP polymers (∼ 5nm)
[5]. For this case, the NPs are trapped by PEP entanglements
and they can only move further by waiting for the PEP chains
to relax by means of reptation [22, 23]. Thus, the apparent
tube diameter should be completely determined by the void
distance of hydrophobic silica NPs at the highφ = 50 ∼ 60%
[5], cf. inset of Fig. 2c.

As we have calculateddtube anddapp independently via PP
analysis andS(q, t), respectively, we can obtaindgeo via the
relationship quoted above (see Fig. 2c). It is interesting to see
that the calculateddgeo is about2.6× the corresponding an-
alytical expression obtained by Torquatoet al. [7, 24]. We
speculate that this discrepancy is caused by the CLF and CR
effects induced by the relatively small sizes of NPs considered
in this letter. Bothdapp anddgeo had been measured [5] from
NSE and void distance distributions, respectively. With these
two d’s at hand, the third,dtube, is evaluated based on the same
relationship (inset Fig. 2c). Our simulation results agreesur-
prisingly well with the experimental results (Fig. 2c). Ourcrit-
ical φc ≈ 31% seems to be in well accord with theφc ≈ 35%
reported in [5].

It seems worthwhile emphasizing that we are not in a po-
sition proving the simple relationship betweendapp, dtube and
dgeo, given by Schneideret al. [5]. As already noted elsewhere
[6], the results from their mean field picture have limited va-
lidity, sinceD ≈ (2− 3) dtube(φ = 0), which indicates CLF
and CR effects being suppressed by the NPs. However, in
our work,D ≈ dtube(φ = 0), which indicates NPs can diffuse
much faster than that predicted by Stokes–Einstein diffusion
law [23]. We had to multiply the calculateddgeo values by 2.6
to match this simple relationship. However, with this picture
at hand, the critical NP volume fraction can be easily deter-
mined to be 31%, marking the transition from polymer to NP
entanglements. Such a critical volume fraction also agrees
reasonably well with our previous PP and normal model anal-
ysis results. The overall situation does not improve further
if a exponentν = 4 is considered, a relationship proposed
by Mergell and Everaers [25] upon considering that entangle-
ments and geometrical confinements are represented by two
sets of harmonic springs.

Tutejaet al. [26] have studied the rheological properties of
linear entangled polystyrene (PS) filled with PS–NPs. They
found that the zero-rate shear viscosity of such PNCs can be
reduced by filling (up toφ ≤ 20%) [26], in contrary to the
traditional Einstein relation. They hypothesized that thePS–
NPs can diffuse much faster than polymer chains, causing the
CR effect to dominate. In this letter, we find that the chains
gradually disentangle upon filling (Tab. I) and confirmed the
faster diffusion behaviors of NPs. As long asφ < φc, geomet-
rical confinement is negligible (Fig. 2c). Thus, the relaxation
dynamics of chains is accelerated upon filling (up toφc), as
demonstrated in Fig. 2a. As a direct consequence, the shear
viscosity (inverse relaxation frequency) of our PNCs should
decrease upon filling, as long asφ < φc. Our findings thus
furthermore suggest a refined and microscopically supported
view on how to explain the viscosity-reduction behaviors of
PNCs, observed by Tutejaet al. [26].
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