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Although orbital degrees of freedom are a factor of fundamental importance in strongly correlated
transition metal compounds, orbital correlations and dynamics remain very difficult to access, in
particular by neutron scattering. Via a direct calculation of scattering amplitudes we show that
instead magnetic resonant inelastic x-ray scattering (RIXS) does reveal orbital correlations. In
contrast to neutron scattering, the intensity of the magnetic excitations in RIXS depends very
sensitively on the symmetry of the orbitals that spins occupy and on photon polarizations. We show
in detail how this effect allows magnetic RIXS to distinguish between alternating orbital ordered
and ferro-orbital (or orbital liquid) states.

PACS numbers: 75.25.Dk, 75.30.Ds, 78.70.Ck, 74.70.Xa

Introduction Ever since the seminal work of Kugel
and Khomskii [1] in the 1980’s it has been known that
orbital degrees of freedom can play a crucial role in corre-
lated transition metal compounds. Orbital ordering and
orbital-orbital interactions are not only closely tied to
magnetic ordering and magnetic interactions, but orbital
degrees of freedom have also been proposed to be of di-
rect relevance to spectacular phenomena such as colossal
magnetoresistance in the manganites or superconductiv-
ity in the iron pnictides [2–4]. Yet, the precise nature
of correlated orbital states, being either of ordered or
liquid type, and their existence in different materials is
intensely debated, which for a large part is due to the fact
that orbital correlations turn out to be very difficult to
detect experimentally. In fact, such experimental access
would be of great help in unraveling the puzzling prop-
erties of many systems with orbital degrees of freedom,
for instance the above mentioned iron-pnictide materials,
where the type of the orbital ordering or its lack is heav-
ily debated [5–7] or titanium and vanadium oxides where
different theoretical scenarios – a rather exotic orbital liq-
uid phase [8, 9], or a classical alternating orbital-ordered
state [10, 11] – have been proposed.

The experimental verification of orbital properties in
correlated materials by neutron scattering is difficult be-
cause neutrons are almost not sensitive to the orbital
symmetries of the ground state, in particular in orbital
systems the angular momentum is quenched by the crys-
tal field [12]. Traditional x-ray diffraction, instead, is
dominated by scattering from the atomic core electrons
while the resonant x-ray diffraction [13, 14], particularly
in the soft x-ray regime, which is the modern method
of choice to detect orbital ordering, suffers from a very
limited scattering phase space making Bragg scattering
only possible for special orbital superstructures that have
large spatial periodicities [15]. There being few orbital-
ordering related Bragg spots – if at all – leaves consider-
able room for controversies on the interpretation of ex-
perimental data [16–18].

Recently resonant inelastic x-ray scattering

(RIXS) [19–22] has been proven successful in mea-
suring spin excitations in various cuprates [23–28],
nickelates [29], and even iron-based compounds [30].
Here we show in a general setting how the polarization
dependent intensity of magnetic RIXS directly provides
an insight into the orbital correlations in the ground
state of correlated materials. In particular, we verify
that RIXS discriminates between different orbital states,
e.g., the alternating orbital (AO) order against the
ferro-orbital (FO) order or the orbital liquid (OL) state.
This method is applicable to any orbital-active material
that has distinct dispersive spectral features in its spin
structure factor S(k, ω), for instance due to the presence
of magnons arising from long-range magnetic ordering.
RIXS cross section RIXS is particularly apt to probe

the properties of strongly correlated electrons, for in-
stance in transition metal (TM) oxides [22]. With an
incoming x-ray of energy ωin and momentum kin an elec-
tron is resonantly excited from a core level into the va-
lence shell. At the TM L2,3-edges this involves a 2p → 3d
dipole allowed transition. In this intermediate state, the
spin of the 2p core-hole is not conserved, as the very
large spin-orbit interactions strongly couples the spin and
orbital momentum of the core-hole. A spin-flip in the
core allows the subsequent recombination of the core-hole
with a 3d-electron that has a spin opposite to the electron
that was originally excited into the 3d-shell. The energy
ωout and momentum kout of the outgoing x-ray result-
ing from this recombination are then related to a spin
excitation with energy ω = ωout − ωin and momentum
k = kout − kin.
The magnetic RIXS cross section at a TM L2,3 edge is

in general [21, 22]

Ie(k, ω) = lim
δ→0+

Im〈0|Ô†
k,e

1

ω + E0 −H + ıδ
Ôk,e|0〉, (1)

where e = ein · (eout)† is the tensor that describes the in-
coming and outgoing photon polarization, and H is the
Hamiltonian describing 3d valence electrons with ground
state |0〉 and energy E0. The Fourier transformed tran-
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FIG. 1. (color online) The schematic representation of the

RIXS operator Ôj,e on a single site at the Cu2+ L2,3 edge.
To calculate the matrix elements of the operator between the
same initial and final 3d orbital state, one needs to sum over
all possible paths connecting them via a three step process,
multiplying at every step as indicated in the figure: (i) the in-

coming polarization eα, (ii) −ıc1 or the spin operator ±c2Ŝγ

[positive (negative) sign for steps along (opposite to) the di-
rection of the arrows], and (iii) the complex conjugate of the
outgoing polarization e∗β (constants c1,2 depend on the edge).

sition operator Ôk,e = 1/
√
N

∑

j Ôj,e exp(ik · j) can be

evaluated from the general expression for Ôj,e following
the symmetry arguments in Ref. 21 [cf. Eqs. (8)-(10)]

Ôj,e =
∑

d

n̂jd Ŝj ·We(dj), (2)

where Ŝj are spin operators, n̂jd are number operators
for electrons in the 3d orbitals on site j, and where the
vector amplitudes We(dj) depend on the orbital symme-
try dj of the ground state at site j. Here each component
of the vector We(dj) is a priori different and thus each
spin operator is multiplied by a distinct amplitude, which
can be related to the fundamental x-ray absorption cross
sectionand therefore implicitly depends on the orbital oc-
cupancy dj at site j [21, 31, 32].
Orbital dependence of RIXS operator As stated above

the orbital dependence of RIXS amplitudes We(dj) is
generic to any orbital system. Nevertheless, to be ex-
plicit, we show how this dependence arises in the simple
case of a Cu2+ ion, i.e., with one hole in the Cu 3d or-
bital. The amplitudes We(dj) can be evaluated using

Eq. (2) as Wα
e (dj) ∝ 〈djσα|Ôj,e|djσα〉 where |djσα〉 is the

state with a hole in the 3d orbital with spin σ along the
α axis. Since one needs here only to calculate the matrix
elements of the operator Ôj,e on single site states, this
can be done just by applying the dipole and fast collision
approximations to the Kramers-Heisenberg formula for
RIXS [33, 34], so that Ôj,e =

∑

αβ eαβD̂
†
β,jĜjD̂α,j, where

D̂αj are the components of the dipole operator [22], and

Ĝj ∝ −ıc1+c2 Ŝj·Π̂j is the intermediate state propagator
(c1,2 are constants depending on the resonant edge, see
Fig. 1). The intermediate state transitions are expressed

here by the operator Π̂γj =
∑

αβ ǫαβγp
†
α,jpβ,j where ǫαβγ

is the Levi-Civita symbol and p†α,j the creation operator
of the 2p core hole in the pα orbital state. This com-
pact expression for the core hole propagator leads to the
schematic representation of the operator Ôj,e on a single
site in Fig. 1.
While the intermediate state propagator Ĝj brings the

spin dependence due to the spin-orbit coupling in the
2p core hole states, the dipole operators D̂αj act in a
different way depending on the orbital occupancy on site
j, so that the amplitude We(dj) strongly depends on the
orbital symmetry of the ground state at each site. Since
this dependence is merely due to the properties of the
dipole transitions and to the spin-orbit coupling, it is
indeed generic to any TM L2,3 edge.
Having analyzed the inherent dependence of the scat-

tering amplitudes We(dj) on the single site orbital oc-

cupancy, we now investigate how the operator Ôj,e in
Eq. (2) depends on the orbital ground state of the bulk.
Hereafter, we consider three different orbital ground
states in a 2D bipartite lattice (later we discuss a more
general case): ferro-orbital (FO) order with the same a
orbital occupied on each site, alternating orbital (AO)
order with a (b) orbitals occupied on sublattice A (B),
and orbital liquid (OL) ground state with the occupan-
cies of a and b orbitals fluctuating similarly to the up and
down spins in the spin liquid state. Thus we obtain

Ôj,e =
[(1

2
+ T̂ z

j

)

We(a) +
(1

2
− T̂ z

j

)

We(b)
]

· Ŝj, (3)

where the orbital pseudospin operator is T̂ z
j = (n̂ja −

n̂jb)/2. Since T z
j = 1/2 for all sites j in the FO state

while T z
j = ±1/2 for every other site in the AO state, the

operator Ôj,e acts differently on different orbital ground
states. Below we show how this feature affects spectra,
by calculating the cross section using Eq. (1) and Eq. (3)
for six ground states with different orbital and magnetic
configurations.
FM systems with AO order We consider a 2D FM

system with AO order (i.e., |0〉 = |FM ⊗ AO〉) with the
spin interactions described by the effective Heisenberg
Hamiltonian H = J

∑

〈i,j〉 Ŝi · Ŝj with negative exchange
constant J < 0. This spin-only Hamiltonian follows from
a Kugel-Khomskii spin-orbital model when the interac-
tions between orbital degrees of freedom generating the
AO ground state are integrated out (see Ref. 35).
The spin wave (single magnon) excitation of such an

ordered FM follows from the Holstein-Primakoff trans-
formation for spins Ŝ+

j = αj, Ŝ
−
j = α†

j and Ŝz
j = 1/2 −

α†
jαj with α†

j being bosonic creation operators: keep-
ing the quadratic terms in αj and Fourier transforming



3

one obtains the bosonic Hamiltonian H =
∑

k ωkα
†
kαk

with spin wave dispersion ωk = 2|J |(1 − γk) where
γk = (cos kx + cos ky)/2. Furthermore one has T̂ z

j |0〉 =
exp (ıQ ·Rj)/2|0〉 where Q = (π, π) is the AO ordering
vector, so that following Eq. (3) one obtains

Ôk,e|FM⊗AO〉= 1

2

{

[

W−
e (a) +W−

e (b)
]

α†
k

+
[

W−
e (a)−W−

e (b)
]

α†
k+Q

}

|FM⊗AO〉, (4)

where W−
e = W x

e − ıW y
e are the amplitudes for the spin

flip transition, which can be calculated for the simple
case of a Cu2+ ion (cf. Fig. 1) or for any other TM ion
(cf. Refs. [21, 31]). Using Eq. (4) and the spin Hamil-
tonian defined above, RIXS cross section can be directly
calculated from Eq. (1) (cf. Fig. 2 and Ref. 36). Due
to the physical inequivalence of the two sublattices, the
magnetic and the orbital Brillouin zones are no longer
the same, so that the backfolded branch of the magnon
dispersion (pseudo optical branch in Fig. 2) gains a finite
intensity ∝ |W−

e (a)−W−
e (b)|2 [cf. Ref. 36 and Eq. (4)],

as the spin flip amplitudes are different for orbitals a and
b.
FM systems with FO order or OL state The above

result stays in contrast with the 2D FM case with FO
order (|0〉 = |FM ⊗ FO〉), for which one has T̂ z

j |0〉 =
1/2|0〉 for all sites j. Again using Eq. (3) one obtains an
equation for the operator Ôk,e and for the cross section in
Eq. (1). In this case the orbital and magnetic Brillouin
zones coincide since W−

e (b) = W−
e (a) and there is no

pseudo-optical magnon branch in the RIXS cross section
(see Ref. 36 and Fig. 2). Finally for the 2D FM case
with an OL state (|0〉 = |FM⊗OL〉) with two fluctuating
orbital states a and b the off-diagonal terms in T̂ z

j |0〉 lead
to orbital excitations and therefore can be omitted from
Eq. (3), as we are interested only in pure spin excitations
and not in coupled spin-orbital ones. Again the orbital
and magnetic Brillouin zones are identical and only the
acoustic branch is detectable [36].
AF systems with AO order We consider a 2D AF

with AO order (i.e., |0〉 = |AF⊗AO〉) with the effective
Heisenberg interaction between spins as in the FM case
but with J > 0. Similarly to the previous case, the sin-
gle magnon excitations are obtained by applying sequen-
tially Holstein-Primakoff, Fourier, and Bogoliubov trans-
formations and keeping only harmonic terms in bosonic
operators α†

k and αk, cf. Ref. [5], so that

Ôk,e|AF⊗AO〉= 1

2

{

[

W+
e (a)+W−

e (b)
]

ukα
†
k

−
[

W+
e (b)+W−

e (a)
]

vkα
†
k

+
[

W+
e (a)−W−

e (b)
]

uk+Qα†
k+Q

+
[

W+
e (b)−W−

e (a)
]

vk+Qα†
k+Q

}

|AF⊗AO〉, (5)

with W+
e = W x

e + ıW y
e and where the Bogoliubov fac-

tors are defined as uk =
√

J/2Ωk + 1/2 and vk =

FIG. 2. (color online) Magnetic RIXS cross section Ie(k, ω)
for different magnetic (FM and AF) and orbital orders (FO
and AO) along a high symmetry path in the Brillouin zone
[where Γ = (0, 0), X = (π, 0), and M = (π, π)], averaged over
incoming and outgoing polarizations. The FO (AO) order is
formed by the x2

− y2 orbital (x2
− z2 and y2

− z2) while the
spin quantization axis is in the xy plane. The color scale is
nonlinear, since intensities of the AF spectra diverge at M,
and at Γ in the AF-AO case. Spectra for the OL case (not
shown) differ only quantitatively from the FO one.

sgn(γk)
√

J/2Ωk − 1/2, and the AF spin wave dispersion

is Ωk = 2J
√

1− γ2
k. This form of the operator in gen-

eral leads to a nonvanishing intensity when k → Γ as
a result of the AO ordering, see Ref. 36 and Fig. 2. In
the case of ideal AF Ωk+Q = Ωk so that in contrast to
the |FM ⊗ AO〉 case one can observe only one branch
in the RIXS spectrum (although any corrections to the
Heisenberg model for which Ωk+Q 6= Ωk will give rise
to a pseudo optical branch in the spectrum, somewhat
similar to the |FM⊗AO〉 case).
AF systems with FO order or OL state Again the

above result stays in contrast with the 2D AF case with
FO order (|0〉 = |AF⊗FO〉) for which the RIXS operator
has a simpler expression than Eq. (5) since W±

e (b) =
W±

e (a). In a similar way intensities for the 2D AF case
with OL state (|0〉 = |AF⊗ OL〉) are obtained [36]. The
intensity vanishes in both cases when k → Γ in agreement
with Ref. 20, cf. Fig. 2 and Ref. 36.

Discriminating different orbital states As shown
above for FM and AF systems, RIXS spectra can discrim-
inate an AO against FO order or OL ground states (cf.
Fig. 2). While in the FM case the pseudo-optical magnon
branch signals the onset of the AO order, in the AF case
the intensity of magnons with momenta k → Γ does not
vanish in the AO case, contrarily to the FO and OL case.
This dependence is not due to distinct magnon disper-
sions for different orbital or electronic ground states [37–
39], but to the orbital dependency of magnetic RIXS am-
plitudes.

Furthermore, circular dichroism of magnetic RIXS in-
tensities allows one to distinguish between different or-
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bital ground states, see Fig. 3. While for FM systems
whether a circular dichroism is present depends on the
symmetry of the orbital occupied, in the AF ones its pres-
ence only depends on the system translational symmetry.
Specifically, for |AF ⊗ FO〉 (or |AF ⊗ OL〉) systems, cir-
cular dichroism vanishes, while in the case of |AF⊗AO〉
order (for which the RIXS spin flip amplitude is finite for
both orbitals forming the AO ground state, cf. Ref. [20])
the circular dichroism is nonzero (Fig. 3).
In fact, if there is an AO order in a magnetic sys-

tem, translational symmetry is broken into two physi-
cally inequivalent sublattices. Consequently a pseudo-
optical branch in the magnon dispersion appears in the
|FM ⊗ AO〉 case. On the other hand, while a simple
|AF ⊗ FO〉 (or |AF ⊗ OL〉) system is symmetric under
the combination of time reversal and a discrete trans-
lation [40], in the |AF ⊗ AO〉 case the latter is broken.
Macroscopically [41], that means that the system is no
longer symmetric under the combination of time rever-
sal and translation. As a consequence, a finite circular
dichroism appears, i.e., RIXS intensities (at fixed k and
ω) for left and right circular polarization of the incoming
photon are no longer equivalent.
Although the actual values of the We(dj) transition

amplitudes depend on the orbital symmetry at each site,
differences in the RIXS spectra between the AO and the
FO/OL ground states show up (cf. Fig. 2 and Fig. 3), as
long as We(a) 6= We(b). For this reason, the discrimi-
nation between different orbital states does not rely on
the particular orbital occupancy on the single site, but
on the breaking of the translational symmetry caused by
the onset of the AO orbital order.
While other inelastic scattering methods have been

theoretically proposed to detect orbital ordering [42, 43],
it should be stressed that, due to the onset of character-
istic dispersion, the magnetic peaks in RIXS can, unlike,
e.g., orbitons, be easily identified. Besides, as typically
magnons interact weakly, quasiparticle peaks in RIXS
spectra have sharp and well-defined line shapes which
would rather not be obliterated by other low energy ex-
citations (cf. Ref. [22]) so that their dependence on the
orbital ground state is very pronounced.
Conclusions We have shown in detail how ground

state orbital correlations directly reflect themselves in
magnetic Resonant Inelastic X-ray Scattering (RIXS) in-
tensities. It follows that measuring the RIXS spectra
at transition metal L2,3 edges in correlated materials
with orbital degrees of freedom and magnetic order, al-
lows one to distinguish between different orbital ground
states [44]. This is possible because in magnetic RIXS the
spin flip mechanism involves a strong spin-orbit coupling
deep in the electronic core so that, unlike in inelastic neu-
tron scattering, the magnetic scattering spectra strongly
depend on the symmetry of the orbitals where the spins
are in.
The method proposed here is of direct relevance to

FIG. 3. (color online) Circular dichroism D = (IeL −

IeR)/(IeL + IeR) for RIXS spectra intensities at ω = Ωk as a
function of transferred momentum k for the AF state, where
eL (eR) is left (right) incoming circular polarization, for AO
(FO and OL) state plotted with solid (dashed) line.

2D orbital systems, e.g, K2CuF4 or Cs2AgF4 with FM
layers and predicted (but not yet explicitly verified) AO
ordering [45–47], as well as to 3D transition metal oxides
with orbital degrees of freedom such as LaMnO3, KCuF3,
LaTiO3 or LaVO3 [48]. In particular, in Ref. 49 we pre-
dict magnetic RIXS spectra for two different polytypes
of KCuF3 with distinct orbitally ordered ground states.
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