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We study the possibility of realizing topological phases in graphene with randomly distributed ad-
sorbates. When graphene is subjected to periodically distributed adatoms, the enhanced spin-orbit
couplings can result in various topological phases. However, at certain adatom coverages, the inter-
valley scattering renders the system a trivial insulator. By employing a finite-size scaling approach
and Landauer-Büttiker formula, we show that the randomization of adatom distribution greatly
weakens the intervalley scattering, but plays a negligible role in spin-orbit couplings. Consequently,
such a randomization turns graphene from a trivial insulator into a topological state.

PACS numbers: 73.43.-f, 72.25.Dc, 73.63.-b, 81.05.ue

Introduction.— Due to its unusual structure, graphene
displays two other internal degrees of freedom besides the
real spin: AB sublattice and valleys K/K ′ [1]. When
graphene is deposited on substrates or adsorbed with
heavy atoms, the interaction-induced symmetry break-
ing can open bulk gaps to support kinds of topological
phases. For example, a staggered AB sublattice poten-
tial breaking the inversion symmetry leads to a quantum
valley-Hall effect [2–4]; certain nonmagnetic adatoms [5]
can enhance the intrinsic spin-orbit coupling (SOC) of
graphene to host a quantum spin-Hall state [6]; some
3d or 5d transition metal adatoms produce a quantum
anomalous-Hall state [7–9] due to the interplay between
proximity-induced magnetization and Rashba SOC [10].
It is noteworthy that the intervalley scattering in these
studies is completely avoided by choosing appropriate
adatom coverages with valleys being separated in the mo-
mentum space, e.g., one adatom in each 4 × 4 supercell
of graphene.

However, at some specific adatom coverages, i.e., one
adatom in each 3n × 3n (n = 1, 2, 3...) supercell of
graphene, valleys K and K ′ are folded into Γ point. The
resulting intervalley scattering becomes significant and
drives graphene into a trivial insulator [10, 11]. In real-
istic samples, the precise control of periodic adsorption
is impractical. The randomly distributed adatoms in-
evitably cause mixture of different coverages and intro-
duce the intervalley scattering. These have discouraged
experimentalists from exploring such novel states. There-
fore, a crucial issue arises: taking the site randomization
of adatoms into account, is it possible to observe topo-
logical phases experimentally?

In this Letter, we show that the randomization of
adatom distribution greatly weakens the intervalley scat-
tering, but does not affect the induced SOCs and mag-
netization, suggesting prosperity of realizing topological
phases in graphene. Using a finite-size scaling method,
we show that the randomization can induce a topological
phase transition from a trivial insulator to a topological

insulator. With Landauer-Büttiker formula, we confirm
our finding by computing the two-terminal conductance
under periodically or randomly distributed adatoms.

Quantum spin-Hall effect.— We consider a graphene
sheet adsorbed with nonmagnetic atoms (e.g. indium or
thallium), which prefer hollow sites of graphene [5]. For
simplicity, we assume that adatoms only interact with
the surrounding six-nearest carbon atoms. Such an inter-
action enhances the intrinsic SOC and generates an site
potential (also known as the crystal field stabilization en-
ergy) on each influenced carbon atoms. This potential is
key to induce the intervalley scattering.

The tight-binding Hamiltonian of graphene with ran-
domly distributed adatoms reads [5, 6, 12]:

H = − t
∑
〈ij〉,α

c†iαcjα + iλSO
∑

〈〈ij〉〉∈R,αβ

νijc
†
iαs

z
αβcjβ

+ U
∑
i∈R,α

c†iαciα, (1)

where c†iα creates an electron on site i with spin α, and
t is the hopping energy between nearest neighbors. The
last two terms represent respectively the intrinsic SOC
λSO and site potential U , which apply on the influenced
sites denoted by R. sz is the z-component of spin Pauli
matrices. 〈〈...〉〉 sums over all next-nearest neighbors.
νij = 1(−1) corresponds to the hopping clockwise (coun-
terclockwise) between next-nearest neighbors. Accord-
ing to their formation mechanisms, λSO should be one
order smaller than U . In the following, we adopt the
intrinsic SOC in the thallium-atom adsorption case, i.e.,
λSO = 0.016t ≈ 0.044 eV [5].

As mentioned in the Introduction, topological phases
in graphene are sensitive to the coverage of adatoms.
To make our investigation complete and convincing, we
shall discuss the effect of randomization on two kinds of
adatom coverage with and without intervalley scatter-
ing. We begin with the discussion on the 11.1% adatom
coverage with intervalley scattering.
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FIG. 1: (Color online) (a)-(b) Two different configurations
of 4 adatoms in a 6 × 6 supercell. (c)-(d) Bulk band struc-
ture only with site potential U = 0.36t (c) or intrinsic SOC
λSO = 0.016t (d). (e) Z2 topological number versus U at fixed
λSO = 0.016t. In (c)-(e), solid and dashed lines correspond
respectively to the supercells in (a) and (b). (f) Schematic
of the finite-size scaling at a fixed 11.1% adatom coverage.
Empty, small solid and large solid circles represent the pris-
tine graphene, carbons influenced by adatoms, and adatoms,
respectively.

Let us first examine the sensitivity of topologically triv-
ial/nontrivial phases to the adatom configuration. Fig-
ures 1(a) and 1(b) display two different 6 × 6 supercells
of graphene. To keep the coverage, four adatoms are in-
cluded in each supercell. In Fig. 1(a) the 3×3 periodicity
still holds, while in Fig. 1(b) the 3× 3 translational sym-
metry is broken due to the shift of one adatom to its
neighboring site. This can be regarded as the simplest
step to randomize a 3×3 supercell to a 6×6 one. To un-
derstand the role of randomization on the site potential
U and intrinsic SOC λSO, we plot the bulk band struc-
ture around Γ point by considering only U or λSO. In
the presence of only U , the intervalley scattering in the
3 × 3 supercell opens a bulk gap as plotted in solid line
in Fig. 1(c). Due to the spin and valley degeneracy, the
bulk bands are four-fold degenerate. One can see that a
slight change of the adatom configuration lifts the valley
degeneracy (see dashed bands) and shrinks the bulk band
gap, implying the decrease of the invtervalley scattering.
As a sharp contrast, the band structures with only in-
trinsic SOC are almost identical for both supercells [see
Fig. 1(d)]. This indicates that the effect of intrinsic SOC
is insensitive to the slight change of the adatom configu-
ration.

Although both site potential and intrinsic SOC can

open bulk gaps, the resulting insulators are topologically
different. An efficient way to identify these phases is to
calculate the Z2 topological number. Using the methods
discussed in Refs. [13, 14], we find different phases arising
from the competition between U and λSO. As shown in
Fig. 1(e), for a fixed λSO = 0.016t, small U leads to a
Z2 = 1 quantum spin-Hall insulator, while large U gives
rise to a Z2 = 0 trivial insulator. A remarkable difference
between the two configurations can be observed in the
range of U ∈ [0.29t, 0.36t]: a phase transition occurs
from a trivial insulator to a Z2 = 1 topological insulator.

Through employing a finite-size scaling method, we
study the effect of strong randomization of adsorption
sites. The simulation procedures can be summarized
as follows: (1) expanding the supercell from 3 × 3 to
3n× 3n (n = 2, 3, 4...); (2) randomly selecting n2 hollow
sites and then determining the influenced atomic sites
R; (3) based on the Hamiltonian in Eq. (1), calculat-
ing the bulk band structure and measuring the bulk gap
∆; (4) repeating the steps (2) and (3) to obtain M sam-
ples. Thereupon, the probability distribution of bulk gap
P (∆) can be obtained according to P (∆)δ∆ = m/M ,
where m counts the magnitudes located within the range
of [∆− δ∆/2,∆ + δ∆/2).

Figure 2 exhibits the evolution of the probability dis-
tribution of bulk gap P (∆) along with the increasing of
the supercell size n. The left column corresponds to
the case with only the site potential U = 0.36t. For
n = 1, although there are 9 different adatom configura-
tions, their band structures are exactly the same. There-
fore, the resulting bulk gap is a constant ∆ = 0.029t
[see Fig. 2(a)]. When n > 1, there are Cn

2

9n2 adatom
configurations in a 3n × 3n supercell, most of which re-
sult in distinct band structures. In Figs. 2(b)-2(e), we
observe that the band gap ∆ fluctuates in a wide re-
gion, and the gap region shrinks toward zero for larger
n. To better reflect this characteristic, we introduce
the median of each ensemble ∆, which is highlighted in
a red line. After a numerical fitting, a scaling law is
found to be ∆ ≈ 0.22U2/(nt). Moreover, such power
law decay as a function of n can also be analytically
obtained from the Fourier component of randomly dis-
tributed site potentials corresponding to the intervalley
scattering. In the inset of Fig. 2(e), we show that P (∆)
of n = 9 can be fitted by a 2D Maxwell distribution func-
tion f(∆) = ∆/σ2 exp(−∆2/2σ2), where σ = ∆/

√
2 ln 2.

According to f(∆), the probability of opening a band gap
in the range of [3∆,∞) is about 0.2%. Together with the
fact that a realistic sample resembles a n→∞ supercell,
one can conclude that the intervalley scattering should
be vanishing with randomly distributed adsorbates.

Next, we turn to the case with only the intrinsic SOC
λSO = 0.016t. As shown in the middle column, we find
that the bulk gap ∆ ≈ 1.15λso is almost independent of
the randomization for any supercell size n. This means
that the intrinsic SOC remains insensitive to the strong
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FIG. 2: (Color online) Probability distribution of bulk gap P (∆) for 3n× 3n supercells of graphene subjected to n2 randomly
distributed adatoms. 2 000 samples are collected for each panel. (a)-(e) Only the site potential U = 0.36t is considered. (f)-(j)
Only the intrinsic SOC λSO = 0.016t is considered. (k)-(o) Both U = 0.36t and λSO = 0.016t are included. The red line labels
the median of each ensemble ∆. Inset: Numerical fitting of the probability distribution for n = 9.

randomization of adatom distribution, and the resulting
quantum spin-Hall phase is stable against the random ad-
sorption. Comparing the results from both limits of only
site potential or intrinsic SOC, it is natural to expect that
the realistic graphene sample should favor the quantum
spin-Hall state when both U and λSO are present.

Such a speculation is verified by the gap statistics
drawn in the right column. In the 3 × 3 supercell, be-
cause of the competition between U and λSO, the gap
opening is smaller than those shown in Figs. 2(a) and
2(f). When the supercell size increases, the median ∆
first decreases at n = 2, but then increases for larger n
[see Figs. 2(m)-2(o)]. The topological number Z2 = 0 is
obtained for n = 1, whereas Z2 = 1 is found for n = 3,
6, and 9. It is thus evident that the increasing of ran-
domization turns graphene from a trivial insulator to a
quantum spin-Hall insulator. From the tendency of ∆,
one can notice that it gradually approaches the band gap
labeled in Fig. 2(f).

Thus far, we analyze the influence of randomization by
investigating the bulk band structures of various super-
cells. Below, we design a two-terminal device illustrated
in Figs. 3(a) and 3(b) to study the transport properties
using the Landauer-Büttiker formula [15]. The adatoms
are only considered in the central scattering regime, and
two leads are modeled by pristine graphene ribbons. The
presence of helical edge modes in quantum spin-Hall insu-
lator gives rise to a quantized longitudinal conductance.

Figure 3(c) plots the average conductance G and its
fluctuation δG as a function of the Fermi energy εF . The
parameters are U = 0.36t and λSO = 0.016t. In the pres-

ence of periodically distributed adatoms [see Fig. 3(a)],
G = 0 and δG = 0 in units of e2/h within the range of
εF ∈ [0.117t, 0.124t], signaling a trivial insulator. How-
ever, when the adatoms become randomly distributed in
Fig. 3(b), a quantized plateau G = 2e2/h with vanishing
fluctuation emerges in the regime of εF ∈ [0.116t, 0.132t].
The distribution of local currents illustrated in the inset
of (c) further indicates a quantum spin-Hall insulator.
Such a phase transition resembles the disorder-induced
topological Anderson insulator [16, 17], except that it is
the adatom configuration that triggers the phase transi-
tion rather than the disorder strength.

Previous analysis has focused on the 11.1% adatom
coverage with strong intervalley scattering. What hap-
pens for other coverages without intervalley scattering?
Let us consider a 6.25% adatom coverage (one adatom
in a 4× 4 supercell) for example. Using the same finite-
size scaling method, we show that the bulk gap is only
dependent on the intrinsic SOC, but independent of the
site energy or supercell size. An immediate evidence is
the robust quantized plateau shown in Fig. 3(d) for either
periodically or randomly distributed adatoms. To con-
clude, in a thallium-atom adsorbed graphene, the quan-
tum spin-Hall state is a system-preferred ground state for
any adatom coverage, and the bulk gap ∼ 46 meV can
be detected under current experimental techniques.

In realistic samples, some adatoms are inevitably dis-
tributed on top sites. A staggered sublattice potential
can open a trivial gap due to the inversion symmetry
breaking. Since adatoms are equally adsorbed on top of
A/B sublattices, we show that the randomization of dis-
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FIG. 3: (Color online) (a)-(b) Schematic of a two-terminal setup with periodically and randomly distributed adatoms, respec-
tively. And both adatom coverages are 11.1%. (c)-(e) Comparison of conductances G between periodic and random adsorption
as a function of Fermi level εF . (c)-(d) The site potential and intrinsic SOC are set to be U = 0.36t and λSO = 0.016t. And
the adatom coverages are 11.1% in panel (c) and 6.25% in panel (d). In (e), the site potential, Rashba SOC, and exchange
field are set to be U = 0.38t, λR = 0.04t and M = 0.04t, respectively. And the adatom coverage is 11.1%. Circle and triangle
symbols represent the periodic and random adatoms. The associated error bar denote the conductance fluctuation δG. Insets
of (c) and (e): schematic of the quantized channels from left to right.

tribution eliminates the effective staggered potential and
decrease the trivial gap [18]. Therefore, the top adsorp-
tion does not affect the realization of topological states
in graphene.

In semiconductors with weak disorder, the spin-Hall
conductance vanishes for uniform SOC [19], whereas a fi-
nite but non-universal spin-Hall conductance emerges for
spatially random SOC [20]. In contrast, when the sys-
tem exhibiting a quantum spin-Hall effect is subjected to
uniform or random SOC, as long as the Fermi level lies
inside the bulk gap, the spin-Hall conductance is univer-
sally quantized and topologically protected against weak
disorders.

Quantum anomalous-Hall effect.— When the 3d/5d
transition metal atoms are adsorbed on graphene, the
interaction enhances Rashba SOC λR [21], and induces
site potential U and magnetization M . In Refs. [8–10],
ab initio calculations show that the quantum anomalous-
Hall phase can be produced in the 6.25% adatom cover-
age, but the trivial insulator is usually formed in the
11.1% adatom coverage due to the strong intervalley
scattering. In Fig. 3(e), we calculate the average con-
ductance versus the Fermi energy εF at 11.1% adatom
coverage. The parameters are U = 0.38t, λR = 0.04t,
and M = 0.04t. We observe that G = 0 e2/h in the
range of εF ∈ [0.125t, 0.127t] for the periodically dis-
tributed adatoms. However, for the randomly distributed
adatoms, a quantized plateau G = 2e2/h appears in
the range of εF ∈ [0.127t, 0.137t]. The inset plots the

schematic of the corresponding local current, indicating
a quantum anomalous-Hall insulator. This result further
confirms our finding that while the intervalley scattering
is fragile, the SOC and exchange field are robust against
the randomization of adatom distribution.

Summary.— For periodically distributed adatoms with
certain coverage, the strong intervalley scattering plays
a dominant role and suppress the topological gap, thus
turns graphene into a trivial insulator. Using both finite-
size scaling method and transport calculation, we show
that when the adatom distribution becomes random, the
intervalley scattering is weakened, but other quantities
(e.g., spin-orbit couplings and exchange field) are not
affected. This finding points out that the topological
states are graphene-favored ground states in the presence
of randomly distributed adatoms.
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