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In graphene, as in most metals, electron-electron interactions renormalize the properties 

of electrons but leave them behaving like non-interacting quasiparticles.  Many measurements 

probe the renormalized properties of electrons right at the Fermi energy.  Uniquely for graphene, 

the accessibility of the electrons at the surface offers the opportunity to use scanned probe 

techniques to examine the effect of interactions at energies away from the Fermi energy, over a 

broad range of densities, and on a local scale.  Using scanning tunneling spectroscopy, we show 

that electron interactions leave the graphene energy dispersion linear as a function of excitation 

energy for energies within ±200 meV of the Fermi energy.  However, the measured dispersion 

velocity depends on density and increases strongly as the density approaches zero near the 

charge neutrality point, revealing a squeezing of the Dirac cone due to interactions.  
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In the absence of interactions the low energy excitations in graphene are described by 

massless Dirac quasiparticles with a linear energy-momentum dispersion, E vk= , where the 

constant of proportionality is the carrier group velocity, v.  When many-body interactions are 

included, the energy dispersion can change [1–12].  In general, this change depends on the 

parameters s[ , , ]n k r , where n is the carrier density, k is the momentum relative to the Brillouin 

zone corner, and sr  is the interaction parameter or coupling constant describing the relative 

strength of the Coulomb interactions and is given by the ratio of potential to kinetic 

energies [13].  In graphene, both the kinetic and potential energies scale as the square root of the 

density, so that sr is independent of density.  Therefore, in graphene, the dependence of the 

dispersion renormalization on sr  and n can be separated.  For monolayer graphene sr is given by 

2
s 0 m/ 4r e vπε ε= , where e is the electron charge, is Planck’s constant divided by 2π, 0ε is the 

permittivity of free space, and mε  is the effective dielectric constant of the medium in which the 

graphene sheet is embedded.   

Previously, measurements of the graphene dispersion renormalization have either 

examined solely the density dependence  [11] or the dependence on energy  [6,9,10], but not 

both over wide ranges of density and energy due to limitations in experimental techniques.  

Transport measurements, which are sensitive to the behavior of electrons at the Fermi energy 

(EF), have shown the dispersion velocity at EF increases at low density  [11].  Angle-resolved 

photoemission spectroscopy (ARPES) has examined the energy dependence of the dispersion 

and found deviations from linearity at high energies below approximately -0.4 eV  [9].  ARPES 

measurements are complicated by the appearance of plasmonic and phonon structures which can 

distort the spectrum at the Dirac point  [6], and they have not been able to examine the density 
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dependence in detail due to the lack of large area gated graphene devices.  Scanning tunneling 

spectroscopy measurements of back-gated devices allows the graphene dispersion to be 

examined as a function of energy away from the Fermi energy  [8,14] so that the renormalization 

can be determined separately as a function of excitation energy and density.  

For excitations at the Fermi level i.e. at Fk k= , many-body theory predicts that the 

renormalized spectrum of graphene can be characterized by a velocity v* given by  [1–3],  

 s s
s

51 ln( ) ln
3 8

Cr r nv r
v nπ

∗ ⎛ ⎞⎡ ⎤= − + + ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 (1) 

The Fermi velocity enhancement described in Eq. (1) was calculated within the random phase 

approximation (RPA), where v is the bare dispersion velocity in the absence of interactions and 

Cn  is a density corresponding to the ultraviolet cutoff energy, which is ≈ 3 eV [2,11].  The 2nd 

and 3rd terms in Eq. 1 result from intraband and interband contributions, respectively.  The 

expression in Eq. 1 describes the reshaping of the Dirac cone at energies equal to the Fermi 

energy FE .  Velocity enhancements obtained from Shubnikov de Haas oscillations in transport 

measurements have considered only the interband contribution in Eq. (1), and found the need for 

an additional density dependent parameter to get agreement with experiment  [11].  The question 

on how the dispersion velocity depends on energy over a broad range of densities remains open.  

In this Letter, we present the first experimental measurements of the Landau level (LL) 

spectroscopy of graphene on hexagonal boron nitride (hBN) spacer layers.  The lower disorder in 

graphene with hBN spacer layers allows a significant improvement in LL lifetimes, with the 

appearance of many LLs over a wide energy range.  This enhanced spectrum, compared to 

previous results without hBN  [8,14], allows us to separate the energy and density contributions 
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to the renormalization of the graphene band structure.  We show how to quantitatively examine 

the Landau level tunneling spectrum taking into account probe tip and graphene quantum 

capacitances and to extract interaction driven velocity renormalization with good accuracy.  We 

find that interactions do not significantly distort the Dirac cones at low energies.  Instead, they 

preserve the linear dispersion while parametrically renormalizing the dispersion velocity at a 

given fixed density.  The measured renormalized velocity is satisfactorily described by the RPA 

theory incorporating the interaction strength sr  and the ultra-violet cutoff density cn  [2,12] 

described by Eq. (1) without the need of additional parameters.   

The experiments were performed in a custom designed cryogenic scanning tunneling 

microscope system operating at 4 K with applied magnetic fields from 0 T to 8 T [15].  The 

graphene devices were fabricated by the method detailed in Dean et al. [16].  A heavily doped 

silicon substrate was used as a back gate to control the carrier density n in the sample by 

applying back gate voltage VG.  In our experiments, a bias voltage VB is applied to the graphene 

and the tunneling current I is measured from the tip to obtain tunneling spectra dI/dV as a 

function of VB, VG, and applied magnetic field B.  Topography measurements of graphene on 

hBN (Fig. 1(a)) are characterized by a moiré pattern formed by the relative rotation of the 

graphene sheet with respect to the underlying hBN crystal as observed in previous 

studies [17,18].  The topographic modulation in Fig. 1(a) is consistent with the thin BN spacer 

layer (5 nm) used in these studies [16].   

Upon applying a magnetic field, the tunneling spectra develops sharp peaks as a function 

of VB as shown in Fig 1(b), indicating the formation of the Landau levels (LL) [14,19–21].  The 

reduced disorder in graphene on hBN is evident by the high fidelity of the LL formation 

compared to previous measurements on SiO2 [8,14].  The LL index N can be identified from the 
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peak distance in bias VB compared to the expected LL energy spectra proportional to |N|1/2.  The 

widths of the LLs, determined by the lifetime of the Dirac quasiparticles, approaches those 

measured in the low-disorder graphene grown  epitaxially on SiC [19,21].  Figure 1(c) shows the 

map of the N = -1 LL peak position, which reflects the spatial variation of disorder potential.  

Within the area of interest, two local potential extrema are indicated as A and B.  At low density, 

A becomes an electron puddle (blue) while B a hole puddle (yellow). 

The tunneling spectra in Fig. 1(b) reflect the graphene LL density of states at a gate 

voltage of VG = -30 V, which induces additional holes to lower the Fermi level by ≈ 200 meV 

with respect to the Dirac point.  Repeating the same tunneling spectra measurements while 

varying the back gate voltage, thus controlling the relative positions of the Fermi level and the 

Dirac point, we can obtain a complete data set, which we refer to as a “gate map”.  The resulting 

tunneling spectra, represented in a two dimensional plot of VB and VG, are shown in Fig. 2, (a) 

and (b), for 2 T and 5 T, respectively.  The LL spectra variation as a function of energy and 

density can be investigated by tracing peaks of the tunneling spectra (bright curve traces) in these 

gate maps.  At lower magnetic field, Fig. 2(a), the smooth curvature of the LLs with gate voltage 

approximately corresponds to the energy variation of the charge neutrality point (Dirac point), 

which varies as ED ∂ n1/2.  In larger fields (Fig. 2(b)) LL formation leads to the familiar stair case 

pattern in the gate maps, previously seen in graphene on SiO2 [8,14], or GaAs 2DEGs [22].  

Every LL becomes pinned at the Fermi level until it fills with carriers and upon filling the next 

unfilled LL makes a quick transition to become pinned at EF.  

To accurately analyze the energy dispersion, we simulate the single particle properties in 

the gate maps (Fig. 2(c)) by calculating the tunneling conductance spectral map using a capacitor 

model [23] that includes the graphene-back-gate capacitance (CG), graphene-probe capacitance 
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(CP), the graphene quantum capacitance, and a constant velocity v.  The simulation in Fig. 2(c) 

shows that the LL staircase transitions do not occur at fixed VG but at different values as VB 

changes, appearing as a line with an angle in the gate map.  This angle is due to the local gating 

of the graphene by the bias potential between the probe tip and graphene, and is determined by 

the ratio of the back gate and probe capacitances, CG/CP.  The constant density (or constant 

chemical potential) axis is therefore along the LL transitions given by this capacitance ratio, as 

indicated by the red line in Fig. 2(b).  For a better comparison, we simulate the LL spectra in the 

VG and VB maps by considering a fixed v and a smoothly varying CG/CP ratio determined from 

the experimental gate maps  [24], as shown in Fig. 2(c).  The simulation result matches well the 

experimental LL transitions and indicates the simulation captures the single particle physics.  

Departure from single particle behavior due to many body effects is seen by a comparing the 

simulation with the experiment at low densities.  Deviations from the constant-velocity 

simulation are illustrated by overlapping the simulation from Fig. 2(c) onto Fig. 2(b) (yellow 

overlay) in the regions of high density and near the charge neutrality point.  Very good 

agreement is seen in matching the LL energy peak positions at high density.  However, the 

simulated LL peak positions underestimate the experimental positions and significantly deviate 

at low density indicating that the dispersion velocity is larger close to the charge neutrality point.  

For example, the simulated peak position of LL2 lies in the minimum of the spectrum between 

the peaks of LL1 and LL2 at zero gate voltage (see white arrow in Fig. 2(b)). 

To accurately determine the interaction driven velocity enhancements, we define a 

constant density (or chemical potential) axis in the (VB, VG) space using the transitions of the 

LLs, which is determined from the CG/CP ratio  [24].  Therefore the LL energy EN can be 

obtained at a fixed density for the Nth LL (LLN) by measuring the LL spectral peak positions in 



7 
 

the plateau regions along lines of constant density (red line in Fig. 2(b)) thereby converting 

dI/dV(VB, VG) to dI/dV(E,n).  A comparison of the dI/dV spectra at constant VG vs. constant 

density n (Fig. 3(a)) shows that the spectrum at constant gate voltage overestimates the energy 

scale by as much as 5 % leading to a corresponding error in an estimate of the dispersion 

velocity.  The importance of examining the correct LLN peak energies at constant density is 

compounded by the fact that the energy scale error at constant gate voltage varies with density, 

since the CG/CP ratio varies.  This will result in errors as large 30 % in determining rs parameters 

from the velocity incorrectly determined at constant gate voltage. Below we determine the many 

body corrections to the renormalized velocity by correctly analyzing the LL spectra at constant 

density with a correct energy scale [24].   

In graphene, the linear dispersion yields the LL spectra, D sgn( )NE E N v NB= + .  The 

LL spectroscopy presented in Fig. 2 thus allows us to probe the dispersion velocity at fixed 

density and magnetic field by inspecting EN for different N (Fig. 3(a)).  Figure 3(b) shows EN-ED  

vs. NB  for different density values.  Here ED is obtained from EN=0 at a given density.  A 

remarkable feature in Fig. 3(b) is that the LL dispersion is highly linear (see inset in Fig. 3(b)) at 

a fixed density but changes slope as the density decreases.  The energy dispersion is thus 

described by the Dirac cone in this energy range but the cone is squeezed at low density, as 

schematically illustrated in Fig. 4(a).   

The velocity extracted from the LL dispersion fits is shown in Fig. 4(b) as a function of 

density for the electron and hole puddle locations, A and B.  We observe a significant increase in 

velocity near the charge neutrality point.  We fit the renormalized velocity using Eq. (1).  The 

solid line in Fig. 4(b) shows a two parameter fit, to the combined data of puddles A and B, with a 
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bare velocity 6(0.957 0.003) 10  m/sv = ± × and an interaction parameter s 0.69 0.03r = ±  [25].  The 

bare velocity is in agreement with previous measurements by a large number of different 

experiments [19,21,26–29].  The fit parameter sr  is equivalent to a measurement of the effective 

dielectric constant of 2BN/SiO 5.3 0.3ε = ±  [25], using 2m BN/SiO( 1) / 2ε ε= + .   

In summary, we present measurements of the LL density of states of graphene on hBN as 

a function of spatial position, density, and magnetic field.  Tunneling spectroscopy at energies 

away from FE allow us to separately analyze the graphene dispersion dependence on excitation 

energy and density.  The dispersion of the LLs as a function of orbital index shows that the linear 

graphene energy-momentum dispersion is retained at low energies even as the charge neutrality 

point is approached.  However, electron interactions cause an increase of the dispersion velocity, 

effectively squeezing the Dirac cone, with decreasing density in agreement with recent 

theoretical predictions [12].   
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Figure Captions: 

Figure 1. Local probing of graphene on hBN.  (a) STM topographic image of graphene 
on hBN. The moiré pattern with a unit cell length of 4.5 nm, corresponds to a rotation of 3.1˚ of 
the graphene lattice relative to the hBN cystal.  (b) Differential conductance spectra of graphene 
on hBN at VG = –30 V.  (c) Spatial variation of the N = -1 LL peak position measured in the same 
area as (a), reflecting the local disorder potential variation.  The positions A and B (white dots) 
denote electron and hole puddle locations where measurements are reported in Figs. 2-4.  

Figure 2. Gate mapping tunneling spectroscopy of the Landau level density of states of 
graphene on hBN.  Each map is built of individual dI/dV vs. VB spectra taken at multiple fixed 
VG.  The color scale is the dI/dV magnitude.  (a) dI/dV gate map at B = 2 T obtained in the hole 
puddle labeled B in Fig. 2(c).  (b) dI/dV gate map spectra at B = 5 T. The red line indicates an 
axis of constant density (chemical potential) following the transitions of the LLs as discussed in 
the text, while the blue line indicates constant VG.  The yellow overlays are portions of the 
simulation in (c).  (c) Simulation of the dI/dV gate map spectra at B = 5 T with a constant 
dispersion velocity of 1.1x106 m/s and the probe-sample capacitance determined from the slope 
of the LL transitions in (b)  [24].  Portions of the simulation are overlaid in (b) (yellow lines) 
showing agreement at high densities and deviations at low densities from using a constant 
velocity.  The white arrow points to the simulated LL2 position which lies in between the 
experimental LL1 and LL2 peaks at low density. 

Figure 3. Landau level dispersion. (a) dI/dV spectra (red) at constant density obtained 
along the red line in Fig. 2(b).  A fit of LL peaks N = 1 to N = 6 is shown in green using a series 
of Lorentzians.  (inset) A comparison of the dI/dV spectra at constant gate voltage (VG = 12 V) 
(blue) and constant density (red), obtained along the lines indicated in Fig. 2(b).  The spectra at 
constant gate voltage overestimates the energy scale by 5 % at this density.  (b) Determination of 
the graphene dispersion velocity from the LL peak energy positions (obtained along lines of 
constant density in the gate maps) for the electron puddle A at B = 2 T. The peak positions are 
plotted as a function of square root of the Landau orbital index N and magnetic field B.  A linear 
fit (solid lines) is used to determine the dispersion velocity.  (inset) Residuals from the linear fit 
showing very good linearity in the LL dispersion.   

Figure 4. Renormalized graphene dispersion. (a) Schematic of the Dirac cone variation 
as a function of density.  The data presented in this paper shows that the graphene energy-
momentum dispersion remains linear at low energy in the presence of electron interactions, while 
the Dirac cone angle, which is inversely proportional to the velocity, decreases (gets squeezed) at 
low density.  (b) Renormalized velocity determined from the linear fitting of LL peak positions 
as described in Fig. 3(b) as a function of density for the electron (red symbols) and hole (blue 
symbols) puddle locations A and B at B = 2 T.  The solid line shows a fit to the combined data 
from puddle A and B using Eq. (1) with v = (0.957±0.003) x 106 m/s and sr  = (0.69±0.03)  [25].  
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