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Abstract 

Although nano-dispersive precipitation hardened alloys have been intensively 

studied over decades as important structural materials, the possibility that these 

alloys may have super functional properties has been completely overlooked. As 

in this letter, they may have giant low-hysteretic strain responses to external 

stimuli if the nanosized single-domain precipitates can switch their orientation 

variants under applied fields. We demonstrate that the misfit-generated coherency 

stress can significantly reduce the variant switching barriers and may drastically 

decrease or even eliminate the hysteresis of the strain super responses to external 

stress and/or magnetic fields. These alloys can thus be functionalized as shape 

memory, superelastic, and/or supermagnetostrictive materials. The conditions of 

such functionalization are established by the interpretation-transparent analytical 

calculations, and confirmed by computer prototyping. In particular, the obtained 

results pave the way for the engineering of rare-earth free alloys with excellent 

magneto-mechanical and good mechanical properties.    
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Decades of intensive investigations of precipitation-hardened alloys have been 

driven by the goal of further enhancement of their mechanical properties.1,2 It has been 

assumed as self-evident that the atomic structure of the precipitates does not change after 

their formation.3,4 However, in the important cases wherein the low symmetry precipitate 

phase has multiple crystallographically equivalent orientation variants, there is no 

physical reason to ignore the possibility of the displacive crystal lattice rearrangement 

(variant switching) within nanosized single-domain precipitates under applied fields. This 

scenario is especially plausible when the low-symmetry phase is near the inherent lattice 

instabilities where the energy barriers of the variant switching are expected to be small.5-

11 Such switching should generate giant strain responses that are commensurate with the 

relative lattice misfits between the orientation variants. If the switching is recoverable 

and low-hysteretic and the applied field is stress, the result is superelasticity. It is 

supermagnetostriction if both precipitates and matrix are ferromagnetic and the applied 

field is magnetic.   

 The energy barriers are expected to be small when the material is soft with 

respect to a certain shear deformation. For example, alloys with low elastic anisotropies, 

11 12 44( ) / 2C C C C′ = − ≈ , where C11, C12, and C44 are elastic constants of the parent cubic 

phase, are soft with respect to any strain rotatiion the principal directions of the 

transformation strain, o
ijε .12,13 An example of this type material seems to be the doped 

TiNi-based alloys that are two-phase nanodispersions of low-symmetry clusters with 

superelastic behavior5-7. There are growing evidences that the recently discovered 

nanostructured multicomponent Ti3Nb-based alloy dubbed Gum Metal7-10 also belongs to 

this group of materials.  
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In this letter, we focus on the second group of alloys with very strong elastic 

anisotropy ( 44C C′� ) that are soft with respect to the shear strain of 1 10 {110}< > .  This 

is a condition of the Zener instability that is, in particular, observed in the β phase 

martensitic alloys.6,11 The important new result is a discovered effect of the further 

reduction or even vanishing of the switching energy barrier caused by the coherency 

stress generated by the crystal lattice misfit, o
ijε . This effect is responsible for the 

achievement of the recoverable low-hysteretic switching and the corresponding low-

hysteretic strain response of the two-phase nanostructured alloys.  

In fact, the variant switching within precipitates can be regarded as a confined 

martensitic transformation whose crystal lattice rearrangement is described by evolving 

o
ijε .12,13 Generally, its theoretical characterization is a complex multi-particle problem 

involving elasticity of significantly non-linear (anharmonic) system of arbitrary 

morphology. However, as shown here, the solution of this problem has a closed analytical 

form for the frequently observed plate-like precipitates. The solution for the strain 

response is reduced to an easily interpreted algebraic equation, which is asymptotically 

accurate for plate-like precipitates with small thickness-to-length ratio.  

For certainty, a typical particular case of precipitation of the tetragonal phase 

from the cubic matrix is discussed—the consideration of precipitation of other low 

symmetry phases can be obtained by a trivial extension. The simplest polynomial 

interpolation of the specific free energy is14: 

3
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where 1
2

[ ; ( )] ( )[ ( )][ ( )]o oo o oo o oo
ij ij ijkl ij ij kl klq C q q qχ ε ε ε ε ε ε= − − , ( )ijklC q  are the elastic moduli of 

the qth variant of the tetragonal phase (q=1,2,3), ( )oo
ij qε  is the conventional eigenstrain 

describing the qth variant of the stress-free tetragonal phase in the cubic coordinates15, 

and [ (1); (2)]oo oo
ij ijA χ ε ε= is a normalization factor. The energy (1) minimized at ( )oo

ij qε has 

the cubic symmetry with respect to o
ijε  . It reproduces the elastic moduli and approximates 

the intrinsic energy barriers between the orientation variants of the tetragonal phase 

without any arbitrary chosen fitting parameters.  

The formation of coherent precipitates with a misfit strain, o
ijε , generates 

coherency stress modifying the value of the energy barriers. Based on the Khachaturyan-

Shatalov theory3,16, the coherency energy can be calculated by the complex analytical 

equation for arbitrarily-shaped elastically anharmonic inclusions. However, in the typical 

particular cases of plate-like precipitates, the equation for the coherency energy is 

reduced to:  

0 0( , ) ( )
2

coh o o o
ij ijkl ij klf Bωε ε ε=n n , (2) 

where ω is the volume fraction of the precipitate, 0n is a unit vector perpendicular to the 

habit plane of the plate, and 0( )ijklB n  is an algebraic function of 0n . (See Supplementary 

information). Since the strain-induced interaction between plate-like precipitates is a 

small correction to the interfacial energy, we neglect the interaction and consider each 

precipitate separately, (See supplementary information). The total specific Helmholtz and 

Gibbs free energies of the system are thus approximated as:  
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0 0( , ) ( ) 0.5 ( )o in o o o
ij ij ijkl ij klf f Bε ω ε ω ε ε= +n n ,

 
(3a) 

0( , , ) ( , )o app o app o
ij ij ij ij ijg fε σ ε ωσ ε= −0n n , (3b) 

where app
ijσ is the applied stress. Both o

ijε and 0n  in (3), in fact, are the long range order 

(lro) parameters of the system evolving during the decomposition at the elevated 

temperature. Their energy-minimizing values, o pr
ij ijε ε=  and 0

p=n n , determine the 

confined atomic structures and the morphology (the orientation of the habit plane) of the 

coherent plate-like precipitate, respectively. It is noted that pr
ijε  determining the 

coherency energy and the structure (and crystal lattice symmetry) of the precipitates 

differs from the stress-free strain, 00 ( )ij qε .12,13  In addition, the total strain of a plate-like 

precipitate is always an Invariant Plane Strain that usually produces monoclinic rather 

than tetragonal structure of the elastically constrained precipitate3 (See more in 

supplementary information). 

Figure 1 compares the energy landscapes of ( )in o
ijf ε and 0( , )p

ijf ε ωn , where pn is 

obtained by the zero-field decomposition. It is shown that the addition of the coherency 

energy changes the locations of energy wells, their depths, and barriers between them. In 

particular, the volume change of the cubic  tetragonal transition plays a significant role 

on determining the orientation of the precipitates, supplementary Fig.S1, and thus the 

topology of free energy landscapes, Figs. 1(b-c).  

Since the precipitates are formed by the diffusion-controlled decomposition, their 

shapes and orientations are fixed after the diffusion is frozen at a low temperature, i.e., 

0
p const≡ =n n . Therefore, the only effect produced by the applied stress is an evolution 

of o
ijε within the precipitate, which generates a macroscopic strain. The paths of evolving 
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o
ijε  under uniaxial stresses applied along the <100> directions are schematically shown in 

Figs. 1(b-c). The stress-strain responses along different evolving paths, ( , )o o p app
ij ij ijε ε σ= n , 

can be determined by solving the algebraic equation of 0o
ijg ε∂ ∂ = . The plots of the 

solution are shown in Figs. 2a-3a.  

The coherent decomposition of an unconstrained sample, 0app
ijσ = , can produce 12 

types of energetically equivalent plate-like tetragonal precipitates. Their energy-

minimizing transformation strains and habit-plane orientations are symmetry-related. As 

a result, if a uniaxial stress is applied along one of the <100> directions, the strain 

response of a specific type of precipitates can be obtained from that of the other type by 

the use of symmetry relations between them. Thus the total strain of the sample is a sum 

of the strain of all types of precipitates multiplied by their volume fractions. Figures 2a-

3a show that the stress-induced variant switching can produce giant strains comparable 

with oo
ijε , and the associated hysteresis can be drastically reduced, Fig. 3a.  

Usually, the early stage of precipitation of the tetragonal phase produces the so-

called tweed structure consisting of plate-like nanoscale coherent inclusions within the 

cubic matrix.17 In particular, this is the case for a precursor state of the ferromagnetic 

martensitic alloys18-20. The lro parameters for this magnetic system are the transformation 

strain, o
ijε , and the magnetization, M . Like the stress, the magnetic field, H, may also 

provide a driving force for the switching between different orientation variants of the 

precipitates. Indeed, the ferromagnetic nano-precipitates and matrix are exchange 

coupled because the magnetic exchange correlation length is usually significantly larger 

than the size of nanoprecipitates. Therefore, an H-field applied to the sample will 
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switch/rotate the magnetization of both matrix and precipitates toward H. If the coupling 

between the magnetization direction and the direction of the orientation variant of the 

precipitate is sufficiently large, it consequently switches the orientation variants of 

nanoprecipitates and thus produces a large strain response to the H-field. This extrinsic 

response is supermagnetostrictive because the induced strain is of the order of oo
ijε .  

The coupling between o
ijε  and M  is originated from the energy of 

magnetocrystalline anisotropy21-23: 

( ) o
M i j ijf m mε ε λ ε≈ −m o

ij, ,  (4) 

where / cKλ ε= ,  K is the magnetocrystalline anisotropy constant21-23, and / Mm M= is 

a unit vector along M . It is noted that the energy (4) has the same form of the 

conventional magnetoelastic coupling energy,[24] and it can be derived from the 

conventional form of the magnetocrystalline anisotropy, 2[1 ( ) ]Mf Kε = − ⋅m e ,[21] by a 

shifting of the reference state, where e is a unit vector along the tetragonality axis.  

If we interpret mag
ij i jm mσ λ= as a “magnetic stress”, the energy (4) plays the same 

role as the stress energy term in (3b), app o
ij ijσ ε− . Therefore, both the stress-induced and H-

induced strain responses of plate-like precipitates are described by the same equation 

(3b). However, unlike the mechanical stress that can easily reach the switching threshold, 

the magnetic stress, mag
ij i jm mσ λ=  can reach it only if K is sufficiently large. Another 

difference is that mag
ijσ  in (4) cannot change sign: it is always either negative 

(compressive) or positive (tensile). The calculated “magnetic stress”-strain curves suggest 

that such ferromagnetic nanodispersions can really have the giant magnetostriction and 
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small hysteresis (Figs. 2b and 3b). It is noted that the values of K used in the calculation 

is of the same order of the experimentally observed ones.22,23 

It turns out that the analytical results obtained for the plate-like precipitates are 

quite general: we essentially obtained the same H-induced strain responses of 

ferromagnetic nanodispersions in the 3D computer modeling (Fig.4) where no a priori 

constraints on the shape and arrangement of the precipitates were imposed, and all 

relevant physically relevant energies were taken into account25. Fig. 4 shows that the 

variant switching generating large strains can take place in nanodispersions at a much 

smaller H-field (comparing to that required for the single-phase tetragonal crystals).  

In this letter, the theory of coherent inclusions has been advanced by taking into 

consideration the principally anharmonic character inherent to multi-variant precipitates 

in the frequent cases of alloys with a large misfit between the phases (1~10%). We 

demonstrated that the two-phase nanostructured alloys can have giant low-hysteretic 

strain responses generated by a variant switching within single-domain coherent 

nanoprecipitates (Figs. 2-4).  Depending on the system, this results in the shape memory 

effects, superelasticity and/or supermagnetostriction. All of them are new effects for 

otherwise well studied precipitation hardened alloys. In principle, such super 

functionalities could be obtained in any nanodispersion of a low-symmetry phase if the 

system is sufficiently hardened to prevent the competing processes such as the dislocation 

plasticity and fracture (K should also be sufficiently large in ferromagnetic alloys, see 

supplementary Figs. S3-S4).  

The topology of the free energy surfaces exemplified in Fig. 1 is a key factor 

determining the characteristics of the strain responses. The global and local minima of the 

energy surfaces describe the stable and metastable orientations variants of precipitates. 
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The switching between them generating a large strain is generally hysteretic because it 

requires surmounting of the energy barriers (the saddle points separating the energy wells 

corresponding to different variants). To reduce or even eliminate the hysteresis, the 

switching barriers should be minimized. We have demonstrated that the coherency stress 

qualitatively changes the configurational energetics of the nanodispersions in materials 

with relatively low intrinsic barriers, reducing or even eliminating the switching barriers 

and thus the hysteresis (Figs. 2-3).  For example, it could be the case for a precursor state 

of some decomposing β phase martensitic alloys ( 44C C′� ) approaching the Zener 

instability11,26,27 at temperatures above but close to the martensitic temperature, Ms.  In 

this case, the formed tweed-like microstructure17-20 is produced by the pseudospinodal 

mechanism28,29 and consists of single-domain plate-like nanoprecipitates. It follows from 

the obtained results that the hysteresis can be further reduced if the formation of 

optimized nanostructures is promoted by proper thermo-mechanical and/or thermo-

magnetic treatments. 

The supermagnetostrictive state of ferromagnetic alloys can be similarly obtained 

by pseudo-spinodal decomposition producing tweed-like nanostructures. Promising 

systems to observe this effect is Fe-30at.%Pd alloys that have about 7-fold elastic 

softening of C′ and precursor tweed-like structure consisting of single-domain 

precipitates of the tetragonal phase18,20. In fact, the giant magnetostriction can be 

anticipated in a wider class of the martensitic ferromagnetic shape memory 

alloys19,22,23,30,31 in a frequently observed precursor two-phase nanostructured state: (i) 

these alloys can also have the nano-scale tweed-like nanostructure above Ms, 18-20 (ii)  

their ferromagnetic nano-particles and matrix are exchanged coupled, (iii) they are 
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elastically highly anisotropic with 44C C′� , and (iv) the underlying single-domain 

ordered tetragonal phase usually has large value of K.22,23 As suggested by Fig. 4, these 

materials can have giant low-hysteretic strain responses to relatively small H-fields.  

The authors gratefully acknowledge the support from DOE under grant DE-FG02-

06ER46290 and from NSF under grant DMR-0704045. The parallel computer 

simulations were performed on LoneStar at Texas Advanced Computing Center.  
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Figure 1.  Intrinsic and the Helmholtz free energies in the planes of * 0iiε =  (a-b), and 

* 1/ 7iiε =  (c), where a large elastic anisotropy is used ( 440.1C C′ = ), and the strain and the 
energy are reduced by ( )c aε ε−  and 2

44 ( )c af C ε εΔ = − , respectively. The energy states 
significantly away from the visualized planes are much higher, and the intrinsic free 
energy of the case of * 1/ 7iiε =  is similar to (a) (See supplementary Fig. S2). In (b-c), 
three variant switching paths of the calculated precipitate under a uniaxial stress applied 
along the <100> directions are demonstrated. Comparing to (a), the energy barriers along 
the possible switching paths in (b-c) are dramatically reduced or even diminished (single-
well configuration along the paths).  
 
 
 

[0.765,0.644,0]p ≈n

(c)

[0.713,0.701,0]p ≈n
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Figure 2. Calculated longitudinal strain responses of a cubic tetragonal phase 
precipitation without volumetric effect ( * 0iiε = ) to differently oriented uniaxial stresses 
(a), and magnetic fields (b). The “Average” curves are the averages of the responses to 
fields applied along three <100> directions. In (b), the positive (tensile) magnetic 
stress, *

44= / ( ) 0.02c aCλ λ ε ε− = , is assumed of the same order of the experimentally 
observed K 23,24,  ( 5 310 /J m∼ ), and a constant bias compression, *

44/ ( )b c aCσ σ ε ε= − , is 
applied along the same direction of the H-field. The horizontal axis in (b) is the magnetic 
stress. The change of H-field during the cycling is schematically shown on the top of (b). 
The stress-strain hysteresis of nondispersions in (a) is significantly reduced when 
comparing to that of the homogeneous tetragonal phase (without precipitation).  
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Figure 3. Calculated longitudinal strain responses of a cubic tetragonal phase 
precipitation with a volumetric effect ( * 1/ 7iiε = ) to differently oriented uniaxial stresses 
(a), and magnetic fields (b). Except for the volumetric effects, all other parameters used 
here are the same as in Fig. 2, (see Fig.2 for the legends). It is noted that the switching 
induced strain response of the considered type of precipitates to a stress along the [100] 
direction is giant and nonhysteretic, (a), and the H-induced switching produces large 
strain response with small hysteresis, (b).   
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Figure 4. Simulated 3D microstructure of a ferromagnetic alloy and its longitudinal 
strain response to a magnetic field under a biased compression. The computer 
prototyping was performed with the same material constants and loading procedures as in 
Fig. 3b. (See supplementary information)   In (a), the sizes of the precipitates are on the 
order of ~10 nm, and the shapes of nanoprecipitates deviate from the ideal platelets 
because all physically relevant energies have been taken into account.25 In (b), sM and 
N are the saturation magnetization and the demagnetization factor determined by the 
shape of the sample, respectively. The curve for the mixture is the averaged response to 
H-fields applied along all three <110> directions, which essentially reproduces the 
average curve in Fig. 3b. Comparing to the responses of single-phase crystals simulated 
under the same conditions, the strain response of a two-phase mixture is significantly 
enhanced, especially at small H-field.  
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