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The dynamics of a quantum phase transition is inextricaldyem with the formation of excitations, as a
result of the critical slowing down in the neighborhood o tritical point. We design a transitionless quantum
driving through a quantum critical point that allows one taess the ground state of the broken-symmetry phase
by a finite-rate quench of the control parameter. The methdlistrated in the one-dimensional quantum Ising
model in a transverse field. Driving through the criticalrios assisted by an auxiliary Hamiltonian, for which
the interplay between the range of the interaction and thgesiahere excitations are suppressed is elucidated.

PACS numbers: 64.60.Ht, 05.30.Rt, 73.43.Nq

The complexity involved in describing a generic many-tem [17], optimal non-linear passage across a QCR, [4],
body quantum system prompted Feynman to suggest the ugghomogeneous quenchésf17], and optimal quantum con-
of a highly controllable quantum system as a simulator of antrol strategies [d]. All those approaches can be regarded as
other, generally complicated, quantum system of interdst [ strategies to exploit or engineer a spectral gap. Notvatitst
From this perspective, interesting quantum systems asethoing, there is a need for new methods to ensure adiabatidity [
with a large amount of entanglement and hardly tractable irin this letter, we shall exploit recent advances in the sanul
classical computers’]. Quantum simulation has become an tion of coherenk-body interactionst, 19 and transitionless
exciting field of research, which is being developed experi-quantum driving 20, 21] to explore an alternative to quan-
mentally by exploring a variety of platforms including @tr  tum adiabatic protocols, and assist a fully adiabatic firatie
cold atoms, trapped ions, photonic quantum systems and spassage across a QCP.
perconducting circuits, among others. Simulation of many- Shortcut to the adiabatic driving of a two-level system.-
body interacting systems is particularly advanced in imple Demirplak and RiceZ(], and Berry P 1] have shown the pos-
mentations with trapped ions][where the building blocks of  sibility of implementing a transitionless quantum driviimg
a digital quantum simulator for both closef] pnd open §] multilevel systems. Let us consider the Landau-Zener (LZ)
guantum systems have been demonstrated. Moreover, whiteansition, the simplest model supporting the KZ¥/], de-
early experimental efforts have been limited to somewhat o scribed by a Hamiltonian:
number of qubits, the simulation of few-hundreds of spins
with variable-range spin-spin Ising-type interactions he- Ho = (A t A

0 A —A(t)
cently been reported].

In a continuous quantum phase transition, divergence ofyhere g*¥Z are the usual Pauli matrices. The instantaneous
length and time scales across a quantum critical point (QCR3igenbasis reads:
leads inevitably to non-adiabatic dynamics. When a param- )
eterA of the Hamiltonian is changed across its critical value 11(A)) = sinB|1(—e)) — cosB[2(—0)),
Ac, the energy gap between the ground and the first excited |2(A)) = cosB|1(—)) + SiNB|2(—o)),
state vanishes, and adiabaticity breaks down. The Kibble- .
Zurek mechanism (KZM), originally developed for classical where the anglé obeys the relations

) =A(t)o*+ A%, (1)

and continuous phase transitions §], predicts that the re- B_ A in20 — A
sulting density of excitations obeys a power-law scalinthwi cos = - /A2 L N2’ Sinsv = VAZ L A2

the quench rate. The power-law exponent is expressed using .

the critical exponents at equilibrium and the dimensidgali and the energy gap B;(t) — Es(t) = 2v/A2+ A2, Following

of the SystemQ' 10] As a result, quantum quenches are use_[zo, 21], it is found that the Hamiltonian that drives the exact
ful to characterize universal features of a system, anded sh evolution of the system along the adiabatic solution assedi

some light on its dynamics out of equilibrium. with the instantaneous eigenbagis(A ))} of Ho in Eq. (1) is
The inevitable formation of excitation is however undesir-given byH = Ho + Hy with [27]

able for a wide range of applications, such as the preparatio Hy —iX/(t 9 _(nla 2

of novel quantum phases in quantum simulation, and ad@bati 1= );H A{nf = (njoym I (n. 2)

guantum computation. Suppressing excitations is also-of in
terest to variety of operations in the laboratory, like egiang
strings of atoms11]. This has motivated studies including the
use of the energy gap arising from the finite size of the sys-

For the LZ crossing, upon explicit calculation one finds
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The adiabatic solution ofy, in which the instantaneous the ground state — note tha#g commutes with the parity op-
eigenstates pick up exclusively a phase along the evolutioaratorP = ﬂ”:l o;. In fermionic representation:

— the sum of the dynamical and Berry phases — becomes the

exact solution of the time-dependent Schrodinger eqnatse - N +og

sociated withH = Hg + H; no matter how fast the transition Mo = n; {(C” —cn) (C”+1+ C“”) —9(Cacn— C”C”)} ’

is crossed, i.e. how large the rat&t) is. This approach has

recently been verified in the laboratory with an effectivetw with anti-periodic boundary conditiongy;1 = —¢;. Us-
state model arising in a Bose-Einstein condensate in the preing the Fourier transforrm, = e~'/4 3 c,&k"/+/N with mo-
ence of an optical lattice?]. menta consistent with the boundary conditidng kt =
Models.-We turn now our attention to the family af-  (£7/N,£3m/N,...,£(N — 1)7t/N), we can conveniently
dimensional free-fermion Hamiltonians: rewrite it as
Hy = Zw{ Bk (A (1)) - O] Uk, 4) Hy=2 ZJLI/J [07(g— cosk) + oy‘sink] g,
k>

wheredi = (oy, 0}, 0f) denote the Pauli matrices acting on \here the operatay, = (Cl,ka)- In this form, it becomes

the k-mode andy = (Cl,l,Cl,z) are fermionic operators. apparent that the Ising model can be decomposed into a series

The functioré (A ) = (aX(A),a)(A),a&(A)) is specific forthe  of independent LZ transitions, as was first realized46].[

model and the sum goes over independentodes. Such a Now, we can directly use the results of the previous section

Hamiltonian represents a variety of systems with QCP, ohclu and write the supplementary Hamiltonian required for an adi

ing in particular the Ising and XY modelséh=1[25],aswell  abatic driving across the QCP,

as the Kitaev model id = 2 [26] andd = 1 [27]. As such it .

has been the subject of a recent series of works on defect pro- A =—d(t) ;}Lnk

duction induced by a quantum quenéh [ &2 9+ 1—2gcosk
We shall use it to illustrate and investigate the pos-_ . L . .

sibility of driving an adiabatic passage across a QCP.Th'S expression is expected to be highly non-local in real

Let us consider the instantaneous eigenstates7pfwith ~ SPace. ltcan be written as

eigenenergies associated with thenodegy . = |8 (A)| =

)
i O Y.

N/2-1 1
i\/aﬁ(/\)2+a1{()\)2+a§()\)2. We generalize Eq.3) to find s =—d(t) [ > hn(@). 7™ + EhN/z(g)jfl[N/z] -(6)
the modified Hamiltoniao? = % + 77, where m=1

Y 1 . The Hamiltonianﬁﬁ[m] includes an interaction over a range
=20 Z z_glfwk [(Bk(A) x 928 (A)) - O] Y m. Above, we have a factor of for m= N/2 — which is

_ ) ) ) o the largest distance in the system with periodic boundany co
induces the adiabatic crossing of the QCP by driving the dygition — because for even N there is only one spin over the
namics exactly along the instantaneous eigenmode#of  distanceN/2 while there are two different ones over smaller

Without further knowledge of the explicit form of the ma- distances Ever;%ﬂ[m] is independent of — all dependence
trix elements of7%, its form in real space cannot be deter- ongis inciuded in éoefﬁcientbm(g) — and reads:

mined. Next, we turn our attention to a specific model.

The quantum Ising model in a transverse fielionsider a im N ‘1
chain ofN spins described by thedlquantum Ising model in My =20 (CnCn+m+ CnCn+m) :
a transverse magnetic fiedgl n=1
N The coefficientdin(g) are given by the Fourier transform,
Ho=—'S (0%0%,1+907), (5) .
n=1

hn(9) = 3 ¥ f(9 sin(mi,
a paradigmatic model to study quantum phase transitioijs [
of relevance to current experimental efforts in quantunusim
lation [28]. We assume periodic boundary conditiang, 1 =
o1 and, for simplicity, eveN. This model exhibits a quan- 1 sink
tum phase transition gt = 1 between a paramagnetic phase f(k) = 492+1—2gcosk’ 7
(/9| > 1) and ferromagnetic phasg| < 1). o _

The Jordan-Wigner transformatiosf = 1 2cicy, (o3 + [N the limit of large N we can approximatehy ~
io¥) = 2cn[]1n(1 - 2¢/q)), wherecy are fermionic annihi- Jo f(k)sin(mkjdk/7, with the result

of the function

lation operators, allows us to rewrite the Hamiltoni&h &s me1
a free fermion model. Below, we will limit ourselves to the h = 1]9 for gl <1,
plus-one-parity subspace of the Hilbert space, that iredud 8| g™ for lg| > 1.



Mapping back to spins, the supplementary Hamiltonianssead 1 : : :
" (a) ! '
%’i[m] = Z (OnOm 1 Onim 100 1m g 1
n=1 g % 2| i
+0¥0n 1 O m-100m) - (8) }g 0
Some comments are in order. Firstly, since we have repre E 0 |L\_ \ , 0 , g , Mk 4
sented the class of Hamiltonian in Ed) & and in particular % 4 : : :
the Ising model §) — as independent LZ crossings, the sup- » (b) 1 T
plementary Hamiltoniag# allows to adiabatically drivany ;::
eigenstate of the model under consideratiot].[ This means 8 1 st 1]
that one can further tailor the Hamiltonig#; for the purpose  © 2
of driving exclusively a given subset of states, e.g., ttoaigd = 0 !
states. Further considerations along that line of reagoaie . o > Mk
beyond the scope pf this lettes ). _ 0 0 /4 /2 37 /4 T
Secondly, coefficientshn(g) can be neatly written as momentum k

hm(g)| = e (™1/¢19/8, where&(g) = [In(|g)| " is the
correlation length in the Ising modeBf]. It follows that
hm(g) ~ €'(1) for distancesn up to the correlation length and FIG. 1. (Color online) Excitation probabilitpk as a function of the
go to zero exponentially fast for a longer interaction ranige ~ Wave vectok, following a shortcut to adiabaticity in thelguantum

” . - : . Ising model. (a) The crossing of the critical point is aggisby a
tcr;]eai%”tlcal point this means tha#] is acting along the whole truncated Hamiltoniar#1 (M) (sm = 1) (b) and a modified truncation

) ) ] m ) where the expansion coefficients are modulated by a raisside
Finally, Hamiltonians of the fornw#] ™ can be implemented Fourier filter. The range of the interaction increases frightrto

in trapped-ion quantum simulators using stroboscopic-techleft with cutoff M = 4,8,16,32,64 (N = 1600). Above, evolve the

nigues [L9, 37 already demonstrated in the laboratos. [ system fromg; = 10 togs = 0 accros QCP ajc = 1 at quench rate
Finite range interactions, filtering, and the KZMMe next v =50 usingJ?’ = 7+ 71(M). The insets show the scaling p§

consider a linear quench of the couplimgt) = g — vt,  as function ok/ku ~ Mk.

through the QCP af)c = 1, which brings the system from

the paramagnetic to the ferromagnetic phase. The evolution _

induced by the Hamiltonias#; (6) is adiabatic in the instan- difference and does not affect how well the approximated

taneous eigenbasis of the Ising mod®) [30]. However the supplementary-Hamiltonia#s#] is able to drive the transition.

range of interaction, e.g. at the critical point, spans dker ~Secondly, the cutoff in Eq. (9) implies approximating the

whole chain. As a result, from a practical point of view, onefunction f (k) in Eq. (7) by its truncated Fourier series. Since

might be interested in assisting the crossing of the QCP wittf (k) is divergent and discontinuous @t= gc = 1 andk = 0,

an approximation to7; that involves only interactions of re- ##1(M) suffers from so-called Gibbs phenomenon, this is, the

stricted range. In this section, we examine the simplest aperoblem of recovering point values of a nonperiodic or disco

proximation, namely, a direct truncation of E@) that limits  tinuous function from its Fourier coefficients/]. In Fig. 1(a)

the range of interaction thl sites, we present the results for the truncatigfi (M) with s =1

(Dirichlet kernel). The Gibbs phenomenon is seen here in the

M . i
~ B m appearance of side-lobes at laige This can be prevented

Hi(M) =v rgls“hm(g)‘%i ’ ©) by using a Fourier space filtg, that modifies the expansion

coefficients B4]. In Fig 1(b) we use the raised cosine filter

wheresny, will be a filter function. Sm = 3[1+cogmm/M)]. It improves the convergence away

We start by examining the limit of a fast transition, which from the discontinuity, making the decay@fwith k (almost)
for now mean > 1 (this will be made more precise later). monotonic, and suppresses the side-lobes observed in-its ab
We consider the initial ground state in the paramagnetispha sence at the expense of broadenpag However, it remains
and evolve it using: (i) only the supplementary Hamilto- impossible to recovef(k) close to its discontinuity, so modes
nian ¢ = J#1(M), (i) both the supplementary and the Ising with k ~ 0 are still excited.
Hamiltonians’#” = 7% + 71 (M). For both cases, we numeri- As an upshot, in the limit of fast quenches the effects of ap-
cally solve the time-dependent Bogoliubov — de Gennes equgroximating.s#3 (M) by 27 (M) depends only oM, and to
tions that describe the evolution of the system, as expildime recover a fully adiabatic dynamics we neldd= N/2. Based
[29]. Fig. 1 shows the probability of excitation in themode,  onthe above considerations and the relatiom.gto the corre-
Pk lation function in the Ising model, we can draw the conjegtur
Firstly, we have verified thapy does not depend on quench that an approximation of the form in Eg9)(induces an adi-
rateu for u > 1, and they coincide in both cases (i) and (i) in abatic dynamics of the modes wikits>> ky ~ M1, This is
that limit. That is, the presence 6%} results only in phase corroborated in the insets in Figwhere we rescalk for dif-



pends on whethddz is smaller or greater theky,.

Relation to the fidelity susceptibility=inally, it is interest-
ing to draw a connection with the so-called fidelity suscepti
bility, which puts some constrains o#. Fidelity suscepti-
bility, xe(A), can be defined in the leading order expansion of
the overlap of the ground-states calculated for slightffec
ent values of external paramefer For a finite system, in the
limit & — 0 [3€], we can Taylor expand the overlapd39:

(A +8) 2~ 1- 8xe (M)

100

Ju—
[e=]
|

-

density of excitations n.,
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102 101 100 10! where x1(A) for a non-degenerated ground state reais [

quench rate v 40

[{0(2)|9x ##6In(A))[*

FIG. 2. (Color online) Suppression of the total number ofitaxions Xt) ,;o |En— Eof? ’

nex as a function of the quench rate of the transverse field in a

1d Ising chain following a quench through the Q@P<1). Thedy- and {|n(A))} and E, are instantaneous eigenstates and
namics is assisted by a truncated auxiliary Hamiltoot&{M ), with eigenenergies o#(A ), and|0(A )) is the ground-state.

ics for /79 (M = 0) is the reference case where the KZM dictates a4 pe able to drive the evolution along the instantaneous
power-law scaling ofiey for v < 1. This scaling is recovered at slow -
~ ground statemust satisfy

quench rates in a passage through the QCP assist&d by ), while
at faster rates there is an efficient suppression of exwitstiAs the ) 0(A)|0) 7% |In(A

range of the interactions is increased, the dynamics in ades is (0(A)[A44n(A)) = |)\/(t) O )I|E A_ E| ( )>a (10)
driven through the instantaneous eigenbasigZgf and a complete n 0

suppression of excitations is achieveld.= 1600, we evolve from  for n # 0. Thus, we can verify that the mean variance/6f

g = 10togs = 0, and no filtering is appliedsg = 1). in the instantaneous ground state4s][
DAZ = (OA)ATI0) = IV OPxe(A). (1)

ferent values of the cutol, and the corresponding excitation Fidelity susceptibility, for translationally invarianystem, is
probabilitiespy collapse onto each other. expected totypically scale [{0-47] at the critical point as
We consider as well the mean number of excitatiorg,=  xr(Ac) ~ N9V, and away from the critical point g (A) ~
1 [7'pkdk, as a function of quench rateand cutoffM. The  N|A — A¢|?V~2. It is divergent in the vicinity of the QCP, as
results are presented in Fi@. During a fast transition and long as fidelity susceptibility is dominated by low lying é&xc
for a given cutoffM, we are able to adiabatically drive modes tations [10].
with k> ky ~ M~1. This means that the mean number of In conclusion for a broad family of many-body systems
defects saturates agx~ M~9. This limit can be seen at the exhibiting a quantum phase transition, we have presented a
right hand side of Fig2. method to assist the adiabatic crossing of the critical tpatin
Next, we focus on slower transitions which are induceda finite-rate by supplementing the system with a finite-range
by the Ising Hamiltonian and approximated supplementaryime-dependent interaction. Our proposal is suited to sce
Hamiltonian 27 = % + 21 (M). In the limiting case of the ground state manifold in quantum simulators. The non-
M = 0 the system is driven only by the Ising Hamiltonian andlocal terms of.™-type in the auxiliary Hamiltonian can
the non-adiabatic dynamics is correctly described by KZMpbe implemented using the stroboscopic techniques recently
[29, 35, 36] —we do not consider here the super-adiabatic limitdemonstrated in the laboratory, [19, 33]. We have focused
where the quench across QCP is adiabatic due to the gap ren the finite-rate adiabatic crossing of a quantum phassitran
sulting from the finite size of the system, which is reached fo tion, where suppressing excitations is particularly evading
extremely slow quenches with< N2 [12, 29). due to the critical slowing down in the proximity of the crii
ForM = 0, i.e. 57 = 7, there appears a characteristic valuepoint. Nonetheless, the method can be applied as well to the
of momenta described by KZMkz ~ v¥/(3+2) = y¥/2 for  preparation of many-body states as an alternative to optima
the Ising model }7] (to be precise, we expect the power-law control techniques/J or in combination with them.
behavior foru « 1, when the system goes out of equilibrium  Acknowledgment.Biscussions with J. Garcia-Ripoll, D.
close to the QCP). The modes with> kgz are expected to Porras and F. Verstraete, as well as comments by B. Damski
cross QCP adiabatically amgy = v9V/(1+dV) — y/2 We re-  and M. B. Plenio are gratefully acknowledged. This research
cover this limit in the left hand side of Fig2, whenM is is supported by the U.S Department of Energy through the
small enough compared to~*. A crossover between the two LANL/LDRD Program and a LANL J. Robert Oppenheimer
guench rate limits occurs for intermediate valuedodndu.  fellowship (AD). MMR acknowledges support from the ERC
The one which dominates for a given set of parameters degrant Querg.
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