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The dynamics of a quantum phase transition is inextricably woven with the formation of excitations, as a
result of the critical slowing down in the neighborhood of the critical point. We design a transitionless quantum
driving through a quantum critical point that allows one to access the ground state of the broken-symmetry phase
by a finite-rate quench of the control parameter. The method is illustrated in the one-dimensional quantum Ising
model in a transverse field. Driving through the critical point is assisted by an auxiliary Hamiltonian, for which
the interplay between the range of the interaction and the modes where excitations are suppressed is elucidated.
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The complexity involved in describing a generic many-
body quantum system prompted Feynman to suggest the use
of a highly controllable quantum system as a simulator of an-
other, generally complicated, quantum system of interest [1].
From this perspective, interesting quantum systems are those
with a large amount of entanglement and hardly tractable in
classical computers [2]. Quantum simulation has become an
exciting field of research, which is being developed experi-
mentally by exploring a variety of platforms including ultra-
cold atoms, trapped ions, photonic quantum systems and su-
perconducting circuits, among others. Simulation of many-
body interacting systems is particularly advanced in imple-
mentations with trapped ions [3] where the building blocks of
a digital quantum simulator for both closed [4] and open [5]
quantum systems have been demonstrated. Moreover, while
early experimental efforts have been limited to somewhat low
number of qubits, the simulation of few-hundreds of spins
with variable-range spin-spin Ising-type interactions has re-
cently been reported [6].

In a continuous quantum phase transition, divergence of
length and time scales across a quantum critical point (QCP)
leads inevitably to non-adiabatic dynamics. When a param-
eterλ of the Hamiltonian is changed across its critical value
λc, the energy gap between the ground and the first excited
state vanishes, and adiabaticity breaks down. The Kibble-
Zurek mechanism (KZM), originally developed for classical
and continuous phase transitions [7, 8], predicts that the re-
sulting density of excitations obeys a power-law scaling with
the quench rate. The power-law exponent is expressed using
the critical exponents at equilibrium and the dimensionality
of the system [9, 10]. As a result, quantum quenches are use-
ful to characterize universal features of a system, and to shed
some light on its dynamics out of equilibrium.

The inevitable formation of excitation is however undesir-
able for a wide range of applications, such as the preparation
of novel quantum phases in quantum simulation, and adiabatic
quantum computation. Suppressing excitations is also of in-
terest to variety of operations in the laboratory, like entangling
strings of atoms [11]. This has motivated studies including the
use of the energy gap arising from the finite size of the sys-

tem [12], optimal non-linear passage across a QCP [13, 14],
inhomogeneous quenches [15–17], and optimal quantum con-
trol strategies [18]. All those approaches can be regarded as
strategies to exploit or engineer a spectral gap. Notwithstand-
ing, there is a need for new methods to ensure adiabaticity [2].
In this letter, we shall exploit recent advances in the simula-
tion of coherentk-body interactions [5, 19] and transitionless
quantum driving [20, 21] to explore an alternative to quan-
tum adiabatic protocols, and assist a fully adiabatic finite-rate
passage across a QCP.

Shortcut to the adiabatic driving of a two-level system.-
Demirplak and Rice [20], and Berry [21] have shown the pos-
sibility of implementing a transitionless quantum drivingin
multilevel systems. Let us consider the Landau-Zener (LZ)
transition, the simplest model supporting the KZM [22], de-
scribed by a Hamiltonian:

H0 =

(

λ (t) ∆
∆ −λ (t)

)

= λ (t)σz+∆σx, (1)

whereσx,y,z are the usual Pauli matrices. The instantaneous
eigenbasis reads:

|1(λ )〉= sinθ |1(−∞)〉− cosθ |2(−∞)〉,
|2(λ )〉= cosθ |1(−∞)〉+ sinθ |2(−∞)〉,

where the angleθ obeys the relations

cos2θ =
λ√

λ 2+∆2
, sin2θ =

∆√
λ 2+∆2

.

and the energy gap isE2(t)−E1(t) = 2
√

∆2+λ 2. Following
[20, 21], it is found that the Hamiltonian that drives the exact
evolution of the system along the adiabatic solution associated
with the instantaneous eigenbasis{|n(λ )〉} of H0 in Eq. (1) is
given byH = H0+H1 with [23]

H1 = iλ ′(t)∑
n
[|∂λ n〉〈n|− 〈n|∂λn〉|n〉〈n|]. (2)

For the LZ crossing, upon explicit calculation one finds

H1 =−λ ′(t)
1
2

∆
∆2+λ (t)2 σy. (3)
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The adiabatic solution ofH0, in which the instantaneous
eigenstates pick up exclusively a phase along the evolution
– the sum of the dynamical and Berry phases – becomes the
exact solution of the time-dependent Schrödinger equation as-
sociated withH = H0+H1 no matter how fast the transition
is crossed, i.e. how large the rateλ ′(t) is. This approach has
recently been verified in the laboratory with an effective two
state model arising in a Bose-Einstein condensate in the pres-
ence of an optical lattice [24].

Models.-We turn now our attention to the family ofd-
dimensional free-fermion Hamiltonians:

H0 = ∑
k

ψ†
k [~ak(λ (t)) ·~σk ]ψk , (4)

where~σk ≡ (σx
k ,σ

y
k ,σ

z
k) denote the Pauli matrices acting on

the k-mode andψ†
k = (c†

k,1,c
†
k,2) are fermionic operators.

The function~ak(λ )≡ (ax
k(λ ),a

y
k(λ ),a

z
k(λ )) is specific for the

model and the sum goes over independentk-modes. Such a
Hamiltonian represents a variety of systems with QCP, includ-
ing in particular the Ising and XY models ind=1 [25], as well
as the Kitaev model ind = 2 [26] andd = 1 [27]. As such it
has been the subject of a recent series of works on defect pro-
duction induced by a quantum quench [9].

We shall use it to illustrate and investigate the pos-
sibility of driving an adiabatic passage across a QCP.
Let us consider the instantaneous eigenstates ofH0 with
eigenenergies associated with thek-modeεk,± =±|~ak(λ )|=
±
√

ax
k(λ )2+ay

k(λ )2+az
k(λ )2. We generalize Eq. (3) to find

the modified HamiltonianH = H0+H1, where

H1 = λ ′(t)∑
k

1

2ε2
k

ψ†
k [(~ak(λ )× ∂λ~ak(λ )) ·~σk ]ψk

induces the adiabatic crossing of the QCP by driving the dy-
namics exactly along the instantaneous eigenmodes ofH0.

Without further knowledge of the explicit form of the ma-
trix elements ofH0, its form in real space cannot be deter-
mined. Next, we turn our attention to a specific model.

The quantum Ising model in a transverse field.-Consider a
chain ofN spins described by the 1d quantum Ising model in
a transverse magnetic fieldg,

H0 =−
N

∑
n=1

(σx
nσx

n+1+gσz
n), (5)

a paradigmatic model to study quantum phase transitions [25]
of relevance to current experimental efforts in quantum simu-
lation [28]. We assume periodic boundary conditionsσN+1 =
σ1 and, for simplicity, evenN. This model exhibits a quan-
tum phase transition atgc=±1 between a paramagnetic phase
(|g|> 1) and ferromagnetic phase (|g|< 1).

The Jordan-Wigner transformation,σz
n = 1−2c†

ncn, (σx
n +

iσy
n) = 2cn∏l<n(1− 2c†

l cl ), wherecn are fermionic annihi-
lation operators, allows us to rewrite the Hamiltonian (5) as
a free fermion model. Below, we will limit ourselves to the
plus-one-parity subspace of the Hilbert space, that includes

the ground state – note thatH0 commutes with the parity op-
eratorP= ∏N

n=1σz
n. In fermionic representation:

H0 =
N

∑
n=1

[

(

cn− c†
n

)

(

c†
n+1+ cn+1

)

−g
(

cnc†
n− c†

ncn
)

]

,

with anti-periodic boundary conditionscN+1 = −c1. Us-
ing the Fourier transformcn = e−iπ/4∑k ckeikn/

√
N with mo-

menta consistent with the boundary conditionsk ∈ k+ =
(±π/N,±3π/N, . . . ,±(N − 1)π/N), we can conveniently
rewrite it as

H0 = 2 ∑
k>0

ψ†
k

[

σz
k(g− cosk)+σx

k sink
]

ψk,

where the operatorψ†
k ≡ (c†

k,c−k). In this form, it becomes
apparent that the Ising model can be decomposed into a series
of independent LZ transitions, as was first realized in [29].
Now, we can directly use the results of the previous section
and write the supplementary Hamiltonian required for an adi-
abatic driving across the QCP,

H1 =−g′(t) ∑
k>0

1
2

sink
g2+1−2gcosk

ψ†
k σy

k ψk.

This expression is expected to be highly non-local in real
space. It can be written as

H1 =−g′(t)

[

N/2−1

∑
m=1

hm(g)H
[m]

1 +
1
2

hN/2(g)H
[N/2]

1

]

. (6)

The HamiltonianH [m]
1 includes an interaction over a range

m. Above, we have a factor of12 for m= N/2 – which is
the largest distance in the system with periodic boundary con-
dition – because for even N there is only one spin over the
distanceN/2 while there are two different ones over smaller

distances. EveryH [m]
1 is independent ofg – all dependence

ong is included in coefficientshm(g) – and reads:

H
[m]

1 = 2i
N

∑
n=1

(

cncn+m+ c†
nc†

n+m

)

.

The coefficientshm(g) are given by the Fourier transform,

hm(g) =
1
N ∑

k

f (k)sin(mk),

of the function

f (k) =
1
4

sink
g2+1−2gcosk

. (7)

In the limit of large N we can approximatehm ≃
∫ π

0 f (k)sin(mk)dk/π , with the result

hm =
1
8

{

gm−1 for |g|< 1,

g−m−1 for |g|> 1.
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Mapping back to spins, the supplementary Hamiltonians reads

H
[m]

1 =
N

∑
n=1

(

σx
nσz

n+1 · · ·σz
n+m−1σy

n+m

+σy
nσz

n+1 · · ·σz
n+m−1σx

n+m

)

. (8)

Some comments are in order. Firstly, since we have repre-
sented the class of Hamiltonian in Eq. (4) – and in particular
the Ising model (5) – as independent LZ crossings, the sup-
plementary HamiltonianH1 allows to adiabatically driveany
eigenstate of the model under consideration [30]. This means
that one can further tailor the HamiltonianH1 for the purpose
of driving exclusively a given subset of states, e.g., the ground
states. Further considerations along that line of reasoning are
beyond the scope of this letter [31].
Secondly, coefficientshm(g) can be neatly written as
|hm(g)| = e−(m±1)/ξ (g)/8, whereξ (g) = | ln(|g|)|−1 is the
correlation length in the Ising model [32]. It follows that
hm(g)∼ O(1) for distancesmup to the correlation length and
go to zero exponentially fast for a longer interaction range. At
the critical point this means thatH1 is acting along the whole
chain.
Finally, Hamiltonians of the formH [m]

1 can be implemented
in trapped-ion quantum simulators using stroboscopic tech-
niques [19, 33] already demonstrated in the laboratory [5].

Finite range interactions, filtering, and the KZM.-We next
consider a linear quench of the couplingg(t) = gc − υt,
through the QCP atgc = 1, which brings the system from
the paramagnetic to the ferromagnetic phase. The evolution
induced by the HamiltonianH1 (6) is adiabatic in the instan-
taneous eigenbasis of the Ising model (5) [30]. However the
range of interaction, e.g. at the critical point, spans overthe
whole chain. As a result, from a practical point of view, one
might be interested in assisting the crossing of the QCP with
an approximation toH1 that involves only interactions of re-
stricted range. In this section, we examine the simplest ap-
proximation, namely, a direct truncation of Eq. (6) that limits
the range of interaction toM sites,

H̃1(M) = υ
M

∑
m=1

smhm(g)H
[m]

1 , (9)

wheresm will be a filter function.
We start by examining the limit of a fast transition, which

for now meansυ ≫ 1 (this will be made more precise later).
We consider the initial ground state in the paramagnetic phase
and evolve it using: (i) only the supplementary Hamilto-
nianH = H̃1(M), (ii) both the supplementary and the Ising
HamiltoniansH =H0+H̃1(M). For both cases, we numeri-
cally solve the time-dependent Bogoliubov – de Gennes equa-
tions that describe the evolution of the system, as explained in
[29]. Fig. 1 shows the probability of excitation in thek-mode,
pk.
Firstly, we have verified thatpk does not depend on quench
rateυ for υ ≫ 1, and they coincide in both cases (i) and (ii) in
that limit. That is, the presence ofH0 results only in phase
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FIG. 1. (Color online) Excitation probabilitypk as a function of the
wave vectork, following a shortcut to adiabaticity in the 1d quantum
Ising model. (a) The crossing of the critical point is assisted by a
truncated HamiltonianH̃1(M) (sm= 1) (b) and a modified truncation
where the expansion coefficients are modulated by a raised-cosine
Fourier filter. The range of the interaction increases from right to
left with cutoff M = 4,8,16,32,64 (N = 1600). Above, evolve the
system fromgi = 10 togf = 0 accros QCP atgc = 1 at quench rate
υ = 50 usingH = H0+H̃1(M). The insets show the scaling ofpk
as function ofk/kM ∼ Mk.

difference and does not affect how well the approximated
supplementary-HamiltonianH̃1 is able to drive the transition.
Secondly, the cutoffM in Eq. (9) implies approximating the
function f (k) in Eq. (7) by its truncated Fourier series. Since
f (k) is divergent and discontinuous atg= gc = 1 andk = 0,
H̃1(M) suffers from so-called Gibbs phenomenon, this is, the
problem of recovering point values of a nonperiodic or discon-
tinuous function from its Fourier coefficients [34]. In Fig. 1(a)
we present the results for the truncatioñH1(M) with sm = 1
(Dirichlet kernel). The Gibbs phenomenon is seen here in the
appearance of side-lobes at largek. This can be prevented
by using a Fourier space filtersm that modifies the expansion
coefficients [34]. In Fig 1(b) we use the raised cosine filter
sm = 1

2[1+ cos(mπ/M)]. It improves the convergence away
from the discontinuity, making the decay ofpk with k (almost)
monotonic, and suppresses the side-lobes observed in its ab-
sence at the expense of broadeningpk. However, it remains
impossible to recoverf (k) close to its discontinuity, so modes
with k≈ 0 are still excited.
As an upshot, in the limit of fast quenches the effects of ap-
proximatingH1(M) by H̃1(M) depends only onM, and to
recover a fully adiabatic dynamics we needM = N/2. Based
on the above considerations and the relation ofhm to the corre-
lation function in the Ising model, we can draw the conjecture
that an approximation of the form in Eq. (9) induces an adi-
abatic dynamics of the modes withk ≫ kM ∼ M−1. This is
corroborated in the insets in Fig.1 where we rescalek for dif-
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FIG. 2. (Color online) Suppression of the total number of excitations
nex as a function of the quench rateυ of the transverse field in a
1d Ising chain following a quench through the QCP (g= 1). The dy-
namics is assisted by a truncated auxiliary HamiltonianH̃1(M), with
a cutoff M = 0,1,2,4,8,16,32,64 from top to bottom. The numer-
ics for H0 (M = 0) is the reference case where the KZM dictates a
power-law scaling ofnex for υ ≪ 1. This scaling is recovered at slow
quench rates in a passage through the QCP assisted byH̃1(M), while
at faster rates there is an efficient suppression of excitations. As the
range of the interactions is increased, the dynamics in all modes is
driven through the instantaneous eigenbasis ofH0, and a complete
suppression of excitations is achieved.N = 1600, we evolve from
gi = 10 togf = 0, and no filtering is applied (sm = 1).

ferent values of the cutoffM, and the corresponding excitation
probabilitiespk collapse onto each other.
We consider as well the mean number of excitations,nex =
1
π
∫ π

0 pkdk, as a function of quench rateυ and cutoffM. The
results are presented in Fig.2. During a fast transition and
for a given cutoffM, we are able to adiabatically drive modes
with k ≫ kM ∼ M−1. This means that the mean number of
defects saturates atnex∼ M−d. This limit can be seen at the
right hand side of Fig.2.

Next, we focus on slower transitions which are induced
by the Ising Hamiltonian and approximated supplementary
Hamiltonian H = H0 + H̃1(M). In the limiting case of
M = 0 the system is driven only by the Ising Hamiltonian and
the non-adiabatic dynamics is correctly described by KZM
[29, 35, 36] – we do not consider here the super-adiabatic limit
where the quench across QCP is adiabatic due to the gap re-
sulting from the finite size of the system, which is reached for
extremely slow quenches withυ ≪ N−2 [12, 29].
ForM = 0, i.e.H = H0, there appears a characteristic value
of momenta described by KZM:kKZ ∼ υν/(1+zν) = υ1/2 for
the Ising model [37] (to be precise, we expect the power-law
behavior forυ ≪ 1, when the system goes out of equilibrium
close to the QCP). The modes withk ≫ kKZ are expected to
cross QCP adiabatically andnex= υdν/(1+dν) = υ1/2. We re-
cover this limit in the left hand side of Fig.2, whenM is
small enough compared toυ−1. A crossover between the two
quench rate limits occurs for intermediate values ofM andυ .
The one which dominates for a given set of parameters de-

pends on whetherkKZ is smaller or greater themkM.
Relation to the fidelity susceptibility.-Finally, it is interest-

ing to draw a connection with the so-called fidelity suscepti-
bility, which puts some constrains onH1. Fidelity suscepti-
bility, χF(λ ), can be defined in the leading order expansion of
the overlap of the ground-states calculated for slightly differ-
ent values of external parameterλ . For a finite system, in the
limit δ → 0 [38], we can Taylor expand the overlap inδ [39]:

|〈λ |λ + δ 〉|2 ≈ 1− δ 2χF(λ ).

whereχ f (λ ) for a non-degenerated ground state reads [30,
40]

χ f (λ ) = ∑
n6=0

|〈0(λ )|∂λ H0|n(λ )〉|2
|En−E0|2

,

and {|n(λ )〉} and En are instantaneous eigenstates and
eigenenergies ofH0(λ ), and|0(λ )〉 is the ground-state.

In addition, the supplementary HamiltonianH1 (2) which
would be able to drive the evolution along the instantaneous
ground statemust satisfy

〈0(λ )|H1|n(λ )〉= iλ ′(t)
〈0(λ )|∂λ H0|n(λ )〉

En−E0
, (10)

for n 6= 0. Thus, we can verify that the mean variance ofH

in the instantaneous ground state is [23]

∆H
2 = 〈0(λ )|H 2

1 |0(λ )〉= |λ ′(t)|2χF(λ ). (11)

Fidelity susceptibility, for translationally invariant system, is
expected totypically scale [40–42] at the critical point as
χF(λc)∼ N2/dν , and away from the critical point asχF(λ )∼
N|λ −λc|dν−2. It is divergent in the vicinity of the QCP, as
long as fidelity susceptibility is dominated by low lying exci-
tations [40].

In conclusion, for a broad family of many-body systems
exhibiting a quantum phase transition, we have presented a
method to assist the adiabatic crossing of the critical point at
a finite-rate by supplementing the system with a finite-range
time-dependent interaction. Our proposal is suited to access
the ground state manifold in quantum simulators. The non-

local terms ofH [m]
1 -type in the auxiliary Hamiltonian can

be implemented using the stroboscopic techniques recently
demonstrated in the laboratory [5, 19, 33]. We have focused
on the finite-rate adiabatic crossing of a quantum phase transi-
tion, where suppressing excitations is particularly challenging
due to the critical slowing down in the proximity of the critical
point. Nonetheless, the method can be applied as well to the
preparation of many-body states as an alternative to optimal
control techniques [43] or in combination with them.
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