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Collisionless magnetic reconnection in high-temperature plasmas has been widely studied through
fluid based models. Here we present results of fluid simulation implementing new equations of state
for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron
pressure that builds in the reconnection region due to electric and magnetic trapping of electrons. In
contrast to previous fluid models, our fluid simulation reproduces the detailed reconnection region
as observed in fully kinetic simulations. We hereby demonstrate that the new fluid closure self-
consistently captures all the physics relevant to the structure of the reconnection region, providing
a gateway to a renewed and deeper theoretical understanding of reconnection in weakly collisional
regimes.

Magnetic reconnection is a common process in plasmas
allowing stress in magnetic fields to be reduced through
a rearrangement of the magnetic field line topology. The
phenomena is often accompanied by a large release of
magnetic energy which heats the plasma and drives large
scale flows. As such, reconnection is the driver of explo-
sive events including solar flares, coronal mass ejections,
magnetic substorms in the Earth’s magnetotail, and saw-
tooth crashes and disruptions in tokamaks [1].

Much theoretical understanding of reconnection has
been acquired through the use of fluid models. In par-
ticular, two-fluid models, describing the plasma as two
separate fluids of electrons and ions [2, 3], have been
widely used as they reproduce fast reconnection and char-
acteristic “Hall” magnetic field structures [4] in weakly
collisional regimes, observed by spacecraft in the Earth
magnetosphere [5] and in laboratory experiments [6, 7].
Also, when comparing two-fluid simulations to results of
fully kinetic simulations, good agreement is observed for
the rate of reconnection [8]. However, fluid and kinetic
codes predict substantially different structure of the re-
connection region. For the generic reconnection scenario
including a guide magnetic field, kinetic simulations often
predict elongated and asymmetric current layers whereas
the current layers in two-fluid codes remain mainly sym-
metric and much shorter. Since these layers can be unsta-
ble to secondary reconnection instabilities, these differ-
ences have raised doubts about the ability of fluid codes
to capture the physics essential to the reconnection pro-
cess [9].

One of the main difficulties in fluid modeling is to ob-
tain a closure to the hierarchy of fluid equations that
is valid in the collisionless limit. A common closure is
to assume isothermal electrons with isotropic pressure
p‖ = p⊥ = nTe. This limit applies to plasmas with
infinite heat conduction such that the electron temper-
ature instantaneously equilibrate along magnetic field
lines. However, this simple closure is at odds with the

anisotropic electron pressure, p‖ ≫ p⊥, seen in the vicin-
ity of the reconnection region both in kinetic simulations
and spacecraft observation [10–13].

Another well-known closure is obtained in the oppo-
site limit where the species are fully magnetized and it
is assumed that the plasma has zero heat conduction.
In this limit the double-adiabatic CGL scalings result
where p‖ ∝ n3/B2 and p⊥ ∝ nB [14]. The isotropic and
CGL models are useful as limiting cases which show the
range of anisotropy that can be expected, and they have
the advantage that the pressure components are given as
explicit functions of n and B. Other, more complicated
models have also been considered where the electron pres-
sure is evolved using various closures for the electron heat
conductivity. Such models often include separate partial
differential equations for evolving the electron pressure
components, and, so far, agreement with kinetic simula-
tions has been limited [15, 16].

In this letter we report on the first self-consistent im-
plementation of a fluid closure applying new equations
of state (EoS) for the parallel and perpendicular electron
pressures recently derived by Le et al. [13]. This clo-
sure is obtained in the limit of magnetized electrons with
an electron thermal speed much larger than the Alfvén
speed, vth,e ≫ vA. In this regime the electron motion
is adiabatic allowing for an analytical solution f(v‖, v⊥)
to the relevant kinetic equation including the effects of
electrons becoming trapped in magnetic wells and by par-
allel electric fields [17]. Using this analytical solution for
f(v‖, v⊥), Le et al. closed the hierarchy of fluid equation
and obtained expressions for the parallel and perpendic-
ular pressure in terms of the density, n, and the strength
of the magnetic field, B. The resulting EoS for p‖(n,B)
and p⊥(n,B) have the following approximate forms

p∗‖ = n∗
2

2 + α
+

πn3

∗

6B2
∗

2α

2α+ 1
, (1)



2

p∗⊥ = n∗
1

1 + α
+ n∗B∗

α

α+ 1
, (2)

where α = n3

∗/B
2

∗ , and for any quantity Q, Q∗ = Q/Q∞,
where Q∞ is the value of Q upstream of the reconnection
region.
The analysis by Le et al. showed that for α ≪ 1 the

electron behavior is dominated by passing electrons with
high heat conduction and the model approach the Boltz-
mann scaling with p‖ = p⊥ ∝ n∗. Meanwhile, in the op-
posite limit, α ≫ 1, most of the electrons follow trapped
trajectories characterized by vanishing heat conduction,
and consequently, here the CGL double-adiabatic scal-
ings are approached, p‖ ∝ n3/B2 and p⊥ ∝ nB. Thus,
the new closure represents a smooth transition from
Boltzmann scaling at low density and high magnetic field
to the CGL scalings at high density and low magnetic
field. Le et al. showed that the electrons pressures in a
kinetic simulations are related to the simulation profiles
of n and B as described by the closure, however, the clo-
sure was not applied in a self-consistent fluid simulation.
Below we describe the results of the new fluid simu-

lations applying the anisotropic closure for the electron
pressure. In addition to this closure we use the regular
two-fluid formulation including compressible flows, adia-
batic ion pressure, and electron inertia. Hyper-resistivity
is included for breaking the frozen–in–condition, while
ion viscosity and ion thermal conductivity is added for
numerical stability. Thus, the full model is described by
the following set of equations:
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Here de is the electron inertial length, ηH is the hyper-
resistivity, and νi and κi are the ion viscosity and heat
conductivity. For simulations with the new fluid closure,
p‖ and p⊥ are given by Eqs. 1 and 2, respectively. For
isotropic simulations we simply use p‖ = p⊥ = nTe. The
equations are implemented numerically using the HiFi
multi-fluid modeling framework [18].

The results of a simulation based on the new closure is
presented below and we compare the results to those of a
fluid simulation with isotropic pressure and a fully kinetic
simulation. For ease of comparison, the three simulations
are all applied to the same 2.5 dimensional system (quan-
tities have no gradients in the y-direction). The simula-
tions are performed in a doubly-periodic domain of size
Lx×Lz = 48di×32di where di =

√

mi/µ0n0e2 is the ion
inertial length. The fluid simulations had 84 grid points
per di while the kinetic simulation had 192. The initial
configuration for the simulations is a double, force-free
current sheet with magnetic fields given by
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Lengths are normalized to di, while velocities and times
are normalized to the Alfvén speed VA = B0/

√
µ0min0

and the ion cyclotron time Ωi = eB0/mi respectively.
The initial current sheet thickness λ = 1, and the
initial up-stream guide magnetic field, B0y = 0.4B0.
The ion and electron pressures are initially uniform
with normalized values βi0 = 2piµ0/B

2

0
= 0.30 and

βe0 = 2p‖µ0/B
2

0 = 2p⊥µ0/B
2

0 = 0.26. The mass ra-
tio is mi/me = 400. In the fluid simulations, the nor-
malized dissipation parameters are ηH = 1.5 × 10−5,
νi = 3.9 × 10−2 and κi = 1.2 × 10−2. The simulation
is not sensitive to moderate changes in these parameters;
low values hasten the onset of physical and numerical in-
stabilities and high values resemble collisional regimes.
Reconnection is seeded with a single X-line using an in-
plane magnetic field perturbation of amplitude 2.1×10−2.
Before the onset of fast reconnection, the fluid runs

yield nearly identical profiles of all quantities indepen-
dent of the closure used for the electrons, but signifi-
cant differences develop at later times characterized by
fast reconnection. At this later stage, all profiles of the
fluid simulation with anisotropic pressure are in excel-
lent agreement with the kinetic simulation results. As
an example, Fig. 1 provides two sets of time-slices of the
out-of-plane current density, Jy, obtained from the three
simulation schemes outlined above.
The profiles in Fig. 1(a-c) are obtained at tΩci = 32,

just after the onset of fast reconnection. At this time, the
profiles for the fluid runs are still similar but differences
are emerging in the inner reconnection region. Partly due
to the intrinsically higher level of numerical noise in PIC
simulations, the onset of reconnection in the kinetic run
includes the random formation of a magnetic island that
is ejected in the exhaust with x < 0. Despite the differ-
ences introduced by the island, the profiles of the kinetic
run and the anisotropic fluid run are in good agreement
for x > 0.
For the profiles in Fig. 1(d,e) evaluated at tΩci = 48,

the differences in Jy between the fluid simulations are
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FIG. 1: (color) Out of plane current density profiles for all three simulations at two different simulation times. Solid line
represent in-plane magnetic field lines. (a-c) Profiles evaluated at tΩci = 32. (d-f) Profiles evaluated at tΩci = 48.

more dramatic. For the isotropic run, the previously ob-
served symmetric structure of the current layer is repro-
duced, limited in size to a few di centered on the X-
line. In contrast, for the fluid run with the anisotropic
pressure, an extended and asymmetric current layer is
observed matching the current layer of the fully kinetic
simulation (compare Fig. 1(e) and Fig. 1(f)).
The agreement between the new fluid model and the

kinetic simulation demonstrates that it is the electron
pressure anisotropy that is responsible for the elongated
electron current layers. The profiles of the pressure
anisotropy, p‖/p⊥, for tΩci = 48 are shown in Fig. 2 as
obtained with the new fluid model and the kinetic simu-
lation. Both simulations yield profiles which are slightly
asymmetric towards the diagonal along two of the four
separators. Furthermore, the profiles demonstrate good
agreement in the magnitude of p‖/p⊥. This agreement
has been confirmed in other simulations by varying the
initial plasma parameters yielding variable levels of the
pressure anisotropy. Suggestive of a scaling law derived
for anti-parallel reconnection [19] the pressure anisotropy
increases at low values of βe∞, where βe∞ is the upstream
electron pressure normalized to the magnetic field pres-
sure.
To understand the asymmetric structure of p‖/p⊥, it

is useful to consider the profiles of By, B, and n in
Fig. 3 obtained at tΩci = 48 from the fluid simula-
tions. Pressure balance in the z-direction requires that
B

2/2µ0+p⊥+pi ≃ const which regulates the density pro-
file such that n is increased where B is small. Thus, the
asymmetries in the profiles of B and n shown in Fig. 3(c-
f) are directly related to the asymmetries in how the

FIG. 2: (color) Ratio of parallel to perpendicular electron
pressure p‖/p⊥ for (a) the anisotropic simulation and (b) the
particle simulation. Solid lines represent in-plane magnetic
field lines.

“Hall” magnetic field adds and subtracts from the back-
ground guidefield. In turn, because the profiles of p‖ and
p⊥ are related to n and B through the EoS (Eqs. (1) and
(2)), this explains the asymmetry observed in p‖/p⊥.

The pressure anisotropy drives perpendicular cur-
rents in the X-line region through the additional term
J⊥extra = [(p‖−p⊥)/B]b̂×b̂·∇b̂. Since∇·J = 0, it follows
that parallel current accounting for the current layer for-
mation is generated by d(J‖extra/B)/dl = (∇·J⊥extra)/B.
Thus, pressure anisotropy influences the magnetic geom-



4

FIG. 3: (color) Comparison between isotropic and anisotropic
fluid simulation results of (a,b) the out of plane magnetic
field, (c,d) the total magnetic field strength, (e,f) the plasma
density and (g) Firehose stability criterion. For the firehose
stability criterion, a ratio greater than one indicates the region
is firehose unstable. Solid lines represent in-plane magnetic
field lines. (h) Time evolution of the reconnected magnetic
flux in the fluid simulation with the new Equations of State
(blue solid line), the isotropic fluid simulation (grean dash-
dotted line), and the kinetic PIC simulation (red dashed line).

etry, allowing the magnetic field to simply rotate in the
exhaust with only a small reduction in B. Completing a
feedback loop, the increased value of B reduces the values
of p‖ − p⊥ as predicted by the EoS, allowing the exhaust
region to regulate its anisotropy and settle close to the
firehose criterion (Fig. 3(g)) as required for the force bal-
ance of a near 1D current sheet [19, 20]. In addition,
the kinetic simulations can also regulate the anisotropy
through pitch angle scattering in cases where firehose or
other instabilities become active in the layer. While the
pressure anisotropy is important for the structure of the
reconnection region, it does not influence the rate of re-
connection (see Fig. 3(h)).
In summary, the new equations of state have been im-

plemented in a new fluid simulation and self-consistently

reproduce the elongated electron current layer found in
PIC simulations. Furthermore, the fluid and kinetic sim-
ulations produce matching electron pressure anisotropy,
and reconnection rate, showing that the model captures
the essential physics of collisionless, guide-field magnetic
reconnection. The fluid model is less computationally
expensive compared to the kinetic simulations, but more
significantly, the fluid model elucidates the physical pro-
cesses responsible for setting the structure of the electron
current sheets and provides a path forward for properly
capturing the micro-physics of collisionless magnetic re-
connection in macroscopic MHD-based fluid simulations.
Future work will address the applicability of the equa-
tions of state to three dimensional geometries and the
stability of the current layers driven by the pressure
anisotropy.
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