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We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC)
in the interior of a cylindrical sample of aspect ratio Γ ≡ D/L = 0.50 (D and L are the diameter
and height respectively). Both in the classical and in the ultimate state of RBC we find that the
temperature varies as A× ln(z/L)+B where z is the distance from the bottom or top plate. In the
classical state the coefficient A decreases in the radial direction as the distance from the side wall
increases. For the ultimate state the radial dependence of A has not yet been determined. These
findings are based on experimental measurements over the Rayleigh-number range 4× 1012 <

∼ Ra <
∼

1015 for a Prandtl number Pr ≃ 0.8 and on direct numerical simulation at Ra = 2× 1012, 2× 1011,
and 2× 1010, all for Pr = 0.7.

PACS numbers: 47.27.te,47.32.Ef,47.20.Bp,47.27.ek

Turbulent convection of a fluid contained between two
horizontal plates separated by a distance L and heated
from below (Rayleigh-Bénard convection or RBC) [1–3] is
a system in fluid mechanics with many features that are
of fundamental interest. It is also a phenomenon with nu-
merous astrophysical [4–6], geophysical [7–12], and tech-
nological [13, 14] applications. Nonetheless some of its
properties remain incompletely explored and understood.

In turbulent RBC a “classical” state exists below a
transition range to an “ultimate” state; for the fluid used
by us the transition range extends from Ra∗1 ≃ 2 × 1013

to Ra∗
2
≃ 5 × 1014 [15] (Ra is a dimensionless measure

of the applied temperature difference). For the classical
state it is known from experiment (see, for instance, [16–
23]) that approximately half of the applied temperature
difference ∆T ≡ Tb −Tt (Tb and Tt are the temperatures
at the bottom and top of the sample respectively) is sus-
tained by two thin thermal boundary layers (BLs), one
just below the top and the other just above the bottom
plate. These BLs are laminar, albeit fluctuating [24–26].
The entire interior of the sample, known as the “bulk”, is
then approximately isothermal in the time average, but
it also undergoes vigorous local temperature fluctuations
[27]. For the ultimate state it was predicted [28] that the
BLs are turbulent as well, due to the shear that is applied
by vigorous fluctuations and possibly by a large-scale cir-
culation (LSC) in the bulk. These turbulent BLs are ex-
pected to extend throughout the sample and to produce
a temperature field (beyond a very thin thermal sublayer
adjacent to the plates) that varies logarithmically with

the distance from the plates.

For both the classical and the ultimate state we found
from experiment that, beyond a thin BL or thermal sub-
layer (which was unresolved by experiment) the temper-
ature T (z) and its root-mean-square (rms) fluctuation
σ(z) vary logarithmically as a function of the distance
z from the bottom plate. For the classical state these
results were confirmed and extended by direct numerical
simulation (DNS). These findings agree with the logarith-
mic dependence predicted for the ultimate state above
Ra∗

2
[28], but to our knowledge there is no theory at

present that predicts a logarithmic temperature profile
in the bulk for Ra < Ra∗1. We believe that the discovery
of logarithmic profiles is an important step towards de-
veloping a more fundamental understanding of the bulk.

The apparatus [29, 30] and the numerical method
[31, 32] were described before. In the experiment we
used sulfur hexafluoride at pressures up to 19 bars and
at Tm ≃ 21◦C as the fluid. The Prandtl number Pr was
0.79 (0.86) near Ra = 4 × 1012 (1015). The sample was
tilted slightly, with its axis at an angle of 14 mrad rel-
ative to gravity. This assured that any remnants of a
LSC that survive at these large Ra [15] would, on aver-
age, choose a preferred azimuthal up-flow and down-flow
orientation (see, for instance, [33, 34]). The tilting had
no other effects on our results (for details, see [30]). Two
sets of thermistors were installed for the temperature-
profile measurements. One was located at what would
be the preferred down-flow orientation at lower Ra, and
the other was removed from the first in the azimuthal
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direction by an angle π. Each set consisted of eight ther-
mometers which were located in the fluid 1.0 ± 0.1 cm
from the side wall. The eight thermistors were located at
z = 4.0, 6.1, 8.1, 12.1, 16.1, 32.2, 64.2, and 110.5 cm, with
an uncertainty of the vertical position of 0.1 cm.

We present experimental measurements over the range
4× 1012 <∼ Ra <

∼ 1015. They are for a single (R− r)/L =
0.0045 (R = D/2 and r is the radial coordinate). This
location is well inside the bulk; the DNS data at Ra =
2 × 1012 showed that the viscous BL only extends to
(R− r)/L ≈ 0.0008. We also analyze DNS data for Pr =
0.7 and Ra = 2× 1010, 2× 1011, and 2× 1012 [31, 32] for
a cylindrical sample of aspect ratio Γ ≡ D/L = 0.50 (D
is the diameter). They cover the entire radial position
range 0 <

∼ (R − r)/L <
∼ 0.25. Both experiment and DNS

show that, through much of the bulk, the dimensionless
time-averaged temperature Θ(z) ≡ [〈T (z)〉−Tm]/∆T (we
denote the time average by 〈...〉 and Tm ≡ (Tb + Tt)/2)
can be represented well by

Θ(z) = A× ln(z/L) +B . (1)

From the experiment we also find that the rms temper-
ature fluctuations σ(z) ≡ 〈[T (z) − 〈T (z)〉]2〉1/2/∆T are
consistent with a logarithmic dependence on z, and rep-
resent them by

σ(z) = C × ln(z/L) +D . (2)

The DNS data show that the amplitude A(r) in the clas-
sical state is largest near the side wall and decreases as
the distance R− r from the wall increases.

Typical data sets for Θ, each based on the sixteen
time-averaged temperatures, are shown in Fig. 1(a) as
a function of z/L on a logarithmic scale. The stars (blue
online, shown only for Ra = 1.08×1015) are results at the
preferred down-flow and up-flow orientation of the LSC.
They reveal a small difference at the two locations which
is typical in size of all other measurements. We attribute
this difference to the influence of remnants of the LSC
on the temperature profiles [35]. Henceforth we consider
only the average at each vertical position of the two data
sets, as shown by the solid symbols in the figure. The
lower (upper) two data sets are for the ultimate (classi-
cal) state. Except at the largest z/L, the data fall on
straight lines and thus are represented well by Eq. 1. In
the ultimate state the logarithmic dependence is followed
within the uncertainty of the data for more than a decade
of z/L, from z/L = 0.018 to z/L = 0.3, corresponding to
a physical length up to 0.64 m. A significant deviation
is seen only at the largest z/L = 0.5, i.e. at the sam-
ple center. For the classical state measurable deviations
from the logarithmic form occur already at z/L = 0.3.
Note that these deviations are similar to what is known
for the logarithmic profiles in pipe flow, which also do
not extend right to the center of the pipe.
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FIG. 1. Results at the radial location (R − r)/L = 0.0045.
(a): Θ(z) ≡ [〈T (z)〉−Tm]/(Tb −Tt) and (b): σ(z) = 〈[T (z)−

〈T (z)〉]2〉1/2/(Tb − Tt) as a function of vertical position z/L.
Vertical dotted line: sample center at z/L = 0.5. The data
are for Ra = 4.9 × 1012 (triangles, green online), 1.18 × 1013

(squares, red online), 7.9 × 1014 (diamonds, purple online),
and 1.08 × 1015 (circles, blue online). Diamonds and circles
in (b) are very close to each other. Stars are results at the
preferred down-flow and up-flow orientation of the LSC for
Ra = 1.08 × 1015. All other symbols are averages of the two
locations. The solid symbols (z/L <

∼ 0.08) were used for the
fits of Eq. 1 or 2 to the data. The lines are those fits.

In a sample that conforms perfectly to the Boussi-
nesq approximation we would expect another logarith-
mic dependence emanating from the top plate to meet
the data shown in the figure at Tm (i.e. at Θ = 0)
and z/L = 1/2. However, in the experiment we find
that Θ(z/L = 1/2) < 0, albeit only by 0.006 (0.028)
for Ra ≃ 1013 (1015). Results for Φ ≡ (Tc − Tm)/∆T
are given in Fig. 2(e). We do not know the reason for
this offset. However, it will necessarily lead to a small
departure from the logarithmic dependence because the
two branches, one coming from the bottom and the other
from the top plate, must have a continuous derivative at
z/L = 1/2 where they meet. For a quantitative anal-
ysis we therefore fit Eq. 1 only to the five points with
z/L <

∼ 0.08. The resulting functions are shown as the
lines in the figure, and the parameters A and B are given
in Fig. 2(a) and (b). The offset Φ < 0 also shifts the
constant B in Eq. 1. The corrected parameter B − Φ is
shown in Fig. 2(b) as open circles. Although B and Φ
varied strongly in the ultimate state, A and B − Φ are
essentially constant above Ra∗

2
.

The rms temperature fluctuations σ are shown in
Fig. 1b. In analogy to recent measurements for turbulent
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FIG. 2. The parameters A,B,C, and D obtained by fitting
Eqs. 1 and 2 to the experimental temperature and fluctua-
tion profiles, and the deviation φ ≡ (Tc − Tm)/∆T of the
temperature Tc = T (z/L = 1/2) from the mean temperature
Tm, all as a function of Ra. The open circles in (b) represent
B −Φ. All data are for a radial position (R− r)/L = 0.0045.
The vertical dotted lines indicate the locations of Ra∗1 and
Ra∗2. The solid lines (red online) are fits of the function
A = a ∗ log10(Ra) + b to the data with Ra < Ra∗1. The
extrapolation to Ra = 2 × 1012 (open circles, green online)
yielded A = −0.0212, B = −0.0296, and Φ = −0.0098.

pipe flow [36], these fluctuations also follow a logarithmic
form. Also in this case the relevant equation (Eq. 2) was
fitted to the data only for z/L <

∼ 0.08 to determine C
and D, which are given in Fig. 2(c) and (d).
As discussed above, there is a range of Ra which ex-

tends from Ra∗1 to Ra∗2 (the vertical dotted lines in the
figure) over which the transition from the classical to the
ultimate state takes place [15]. The locations of Ra∗

1
and

Ra∗2 are particularly noticeable in the data for B and
Φ. In the transition region the parameters scatter more
than above or below it because the state assumed by the
system can vary from one experimental point to another.
In Fig. 3 we show results for Θ(z) from DNS [31, 32].
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FIG. 3. Θ(z) as a function of z/L at a radial position (R −
r)/L = 0.0045 from DNS for three values of Ra, Pr = 0.7,
and Γ = 1/2. Averages of the profiles measured as a function
of distance from the bottom and the top plate are shown.
The thin dashed straight lines are fits of Eq. 1 over the range
0.01 ≤ z/L ≤ 0.1 to the data (the fitting interval is indicated
by two short dashed vertical lines).
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FIG. 4. DNS results for A and B in Eq. 1 for three values of
Ra as a function of (R − r)/L on a logarithmic scale. Coeffi-
cients from fits to the averages of Θ obtained as a function of
distance from the bottom and the top plate are shown. The
open circles (green online) correspond to the extrapolations
of the experimental data for A and B as shown in Figs. 2(a)
and (b) to Ra = 2 × 1012. The open diamond indicates the
value of B −Φ, see Fig. 2(e) and (b).

They are for the same radial position (R−r)/L = 0.0045
as that of the experiment, and are based on azimuthally
and time averaged temperature data. In this (and the
following) figure we show the averages of the profiles de-
termined in the top and the bottom half of the sample.
As for the experimental data, the profile at z/L >

∼ 10−2



4

can be described well by Eq. (1). Figure 4 gives the
DNS results for A and B as a function of the radial
position (R − r)/L, based on the temperature data for
10−2 ≤ z/L ≤ 10−1. In this figure one sees that there is
excellent agreement between the values of A and B mea-
sured in the experiment and the simulations when B from
the experiment is corrected by the offset Φ at z/L = 0.5
[see Fig. 2(e)]. In addition, the figure reveals that the
magnitude of A is largest near the side wall and that it
decreases (approximately logarithmically) as the sample
interior is approached. Thus the DNS indicates that the
logarithmic vertical temperature profile is strongly influ-
enced by the existence of the side wall.

In this Letter we reported on results obtained by us-
ing a combination of experiment and DNS to study the
interior of turbulent RBC. For the classical state, which
exists for Ra < Ra∗

1
and which has laminar BLs adjacent

to the top and bottom plates, we find that the bulk which
is found between these two layers sustains a non-trivial
and interesting temperature field Θ(z/L, r/L). Whereas
it had generally been assumed that the temperature in
the sample interior is either constant or varying linearly
and slowly in space, we find that Θ varies logarithmi-
cally with distance from the plates over a wide range
of z/L. The root-mean-square temperature fluctuations
show similar variations. The amplitude of the logarith-
mic profile is largest near the side wall. Its origin remains
unclear. On the one hand one may speculate that it is the
result of the diffusion of enthalpy carried from the BLs
into the interior by plumes; but a model for this pro-
cess which would yield a logarithmic distribution is not
known to us. On the other hand, the logarithmic vari-
ation suggests a possible relationship to the well known
logarithmic velocity profiles in turbulent shear flows dis-
cussed originally by von Kármán [37] and Prandtl [38]
(for a recent review, see [39]), and to the recently dis-
covered logarithmic variation of turbulent fluctuations in
pipe flow [36]. Perhaps turbulence in the BL may not be
a necessary condition for logarithmic profiles - the spatial
constraints of the turbulent eddies in the bulk through
a boundary layer of Prandtl-Blasius type (with the wall
or plate behind it) may also be sufficient for such a log-
arithmic profile.

In the ultimate state, which exists above Ra∗2 [15, 40],
it was predicted [28] that the BLs are turbulent and
that they extend vertically throughout the entire sam-
ple; thus there is no “bulk” in the same sense as there
is for the classical state. In analogy to turbulent shear
flows, a logarithmic temperature profile due to the tur-
bulent BLs was predicted to extend from each plate deep
into the sample, with the two profiles meeting at half
height. Indeed, the experimental measurements in the
ultimate state do find a logarithmic dependence of the
temperature on the vertical coordinate. Unfortunately,
these large values of Ra are not yet accessible to DNS
(and will not be for some time), and experimental results

are available only for one radial position. Thus, the loga-
rithmic variation of the temperature with distance from
the plates that was predicted by Grossmann and Lohse
[28] has not yet been fully confirmed by simulation or
experiment.
It is interesting to note that the parameters A and

B − Φ in Figs. 2(a) and (b) do not show any significant
variation over the (unfortunately rather small) accessible
range of Ra in the ultimate state. The corresponding co-
efficients in shear flow are also independent of the driving
[39], which in that case is represented by the Reynolds
number Re. Also noteworthy is the fact that the results
for σ in the ultimate state shown in Fig. 1(b) show no Ra
dependence. This, too, mirrors the universal logarithmic
dependence found in pipe flow [36]. These comparisons
tend to strengthen the likelihood that the logarithmic
dependences seen in the ultimate state of RBC are in-
deed related to those found in shear flows. In distinction
to this, in the classical state the coefficients describing
Θ at constant (R− r)/L vary considerably with Ra [see
Fig. 1(a) and 2(a) and (b)], suggesting that any relation-
ship to the logarithmic dependences in shear flow, if it
exists, is less direct.

Acknowledgements: We are grateful to the Max-Planck
Society and the Volkswagen Stiftung for their support of
the experiment. We thank the Deutsche Forschungsge-
meinschaft (DFG) for financial support through SFB963:
“Astrophysical Flow Instabilities and Turbulence”. The
work of GA was supported in part by the U.S. National
Science Foundation through Grant DMR11-58514. The
simulation at Ra = 2 × 1012 was performed as part of
a large scale computing project at HLRS (High Perfor-
mance Computing Center Stuttgart). RJAMS & DL
thank the Foundation for Fundamental Research on Mat-
ter (FOM) for financial support.

[1] G. Ahlers, Physics 2, 74 (2009).
[2] G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys.

81, 503 (2009).
[3] D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 335

(2010).
[4] F. Cattaneo, T. Emonet, and N. Weiss, Astrophys. J.

588, 1183 (2003).
[5] F. H. Busse, Chaos 4, 123 (1994).
[6] A. Nordlund, Solar photosphere and convection (Cam-

bridge University press, Cambridge, 2003).
[7] P. Cardin and P. Olson, Phys. of the Earth and Planetary

Interiors 82, 235 (1994).
[8] G. Glatzmaier, R. Coe, L. Hongre, and P. Roberts, Na-

ture (London) 401, 885 (1999).
[9] E. van Doorn, B. Dhruva, K. R. Sreenivasan, and V. Cas-

sella, Phys. Fluids 12, 1529 (2000).
[10] D. L. Hartmann, L. A. Moy, and Q. Fu, J. Climate 14,

4495 (2001).
[11] J. Marshall and F. Schott, Rev. Geophys. 37, 1 (1999).



5

[12] S. Rahmstorf, Climate Change 46, 247 (2000).
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[37] T. von Kármán, Nachr. Ges. Wiss. Göttingen, Math.-

Phys. Kl. 58-76, 322 (1930).
[38] L. Prandtl, Ergeb. Aerodyn. Versuch, Göttingen IV, 18

(1932).
[39] I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib,

A. J. Smits, and K. R. Sreenivasan, Phys. Fluids 22,
065103 (2010).

[40] S. Grossmann and D. Lohse, Phys. Rev. E 66, 016305
(2002).


