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We report the result of our calculation of the complete tenth-order QED terms of the muon

g − 2. Our result is a
(10)
µ = 753.29 (1.04) in units of (α/π)5, which is about 4.5 s.d. larger than

the leading-logarithmic estimate 663 (20). We also improved the precision of the eighth-order QED

term of aµ, obtaining a
(8)
µ = 130.8794 (63) in units of (α/π)4. The new QED contribution is

aµ(QED) = 116 584 718 951 (80)× 10−14, which does not resolve the existing discrepancy between
the standard-model prediction and measurement of aµ.
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The anomalous magnetic moment aµ of the muon has been studied extensively both experimentally and theoretically
since it provides one of the promising paths in exploring possible new physics beyond the standard model. For this
purpose it is crucial to know the prediction of the standard model as precisely as possible.

On the experimental side the current world average of the measured aµ is [1, 2]:

aµ(exp) = 116 592 089 (63)× 10−11 [0.5 ppm] . (1)

New experiments designed to improve the precision further are being prepared at Fermilab [3] and J-PARC [4].

In the standard model, aµ can be divided into electromagnetic, hadronic, and electroweak contributions

aµ = aµ(QED) + aµ(hadronic) + aµ(electroweak). (2)

At present aµ(hadronic) is the largest source of theoretical uncertainty. The uncertainty comes mostly from the O(α2)
hadronic vacuum-polarization (v.p.) term, α being the fine-structure constant. The lattice QCD simulations have
attempted to evaluate this contribution [5–10]. At present, most accurate evaluations must rely on the experimental
information. Three types of measurements are available for this purpose: (1) e+e− → hadrons, (2) τ± → ν+π± +π0

, (3) e+e− → γ +hadrons. These processes have been investigated intensely by many groups [11–13].We list here one
of them [13]:

aµ(had. v.p.) = 6949.1 (37.2)exp(21.0)rad × 10−11, (3)

which overlaps other values based on the e+e− data [11, 12] and makes the standard-model prediction closest to the
experiment (1). The next-to-leading-order (NLO) hadronic vacuum-polarization contribution is also known [13]:

aµ(NLO had. v.p.) = −98.4 (0.6)exp(0.4)rad × 10−11. (4)

The hadronic light-by-light scattering contribution (l-l) is of similar size as aµ(NLO had. v.p.), but has a much larger
theoretical uncertainty [14–17]

aµ(had. l-l) = 116 (40)× 10−11, (5)

where the uncertainty 40× 10−11 covers almost all values obtained in different publications.

The electroweak contribution has been calculated up to 2-loop order [18–21]:

aµ(weak) = 154 (2)× 10−11. (6)

Since this uncertainty is 30 times smaller than the experimental precision of (1), it can be regarded as known precisely.

The primary purpose of this letter is to report the complete numerical evaluation of all tenth-order QED contribution
to aµ. It leads to a sizable reduction of the uncertainty of the previous estimate by the leading-log approximations
[22, 23]. We have also improved the numerical precision of the eighth-order QED contribution including the newly
evaluated tau-lepton contribution. Together they represent a significant reduction in the theoretical uncertainty of
the QED part of aµ.

The QED contribution to aµ can be evaluated by the perturbative expansion in α/π:

aµ(QED) =
∞
∑

n=1

(α

π

)n

a(2n)µ , (7)

where a
(2n)
µ is finite thanks to the renormalizability of QED and can be written as

a(2n)µ = A
(2n)
1 +A

(2n)
2 (mµ/me) +A

(2n)
2 (mµ/mτ )

+A
(2n)
3 (mµ/me,mµ/mτ ). (8)

A
(2n)
1 is independent of mass and universal for all leptons. A

(2)
1 , A

(4)
1 and A

(6)
1 are known exactly [24–27]. Mass

dependence is known analytically for A
(2n)
2 and A

(2n)
3 for n = 2, 3 [28–32]. We reevaluated them using the latest

values of the muon-electron mass ratio mµ/me = 206.768 2843 (52) and/or the muon-tau mass ratio mµ/mτ =
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FIG. 1. Vertex diagrams representing 13 gauge-invariant subsets contributing to the lepton g − 2 at the eighth-order. Solid
and wavy lines represent lepton and photon lines, respectively.

5.946 49 (54)×10−2 [33]. In the same order of terms as shown on the right-hand-side of (8), the results are summarized
as follows:

a(2)µ = 0.5,

a(4)µ = −0.328 478 965 579 . . .+ 1.094 258 312 0 (83)

+ 0.780 79 (15)× 10−4

= 0.765 857 425 (17) ,

a(6)µ = 1.181 241 456 . . .+ 22.868 380 04 (23)

+ 0.360 70 (13)× 10−3 + 0.527 76 (11)× 10−3

= 24.050 509 96 (32) . (9)

The value of a
(8)
µ has been obtained mostly by numerical integration [34–36]. They arise from 13 gauge-invariant

sets whose representative diagrams are shown in Fig. 1. We have reevaluated some of them for further check and
improvement of numerical precision. The results for the mass-dependent terms are summarized in Table I.

From the data listed in Table I and the value of A
(8)
1 from Refs. [35–37], we obtain the following value for the

eighth-order QED contribution a
(8)
µ :

a(8)µ = −1.9106 (20) + 132.685 2 (60)

+ 0.042 34 (12) + 0.062 72 (4)

= 130.879 6 (63). (10)

TABLE I. The eighth-order mass-dependent QED contribution from 12 gauge-invariant groups to muon g−2, whose represen-

tatives are shown in Fig. 1. The mass-dependence of A
(8)
3 is A

(8)
3 (mµ/me,mµ/mτ ).

group A
(8)
2 (mµ/me) A

(8)
2 (mµ/mτ ) A

(8)
3

I(a) 7.74547 (42) 0.000032 (0) 0.003209 (0)
I(b) 7.58201 (71) 0.000252 (0) 0.002611 (0)
I(c) 1.624307 (40) 0.000737 (0) 0.001807 (0)
I(d) −0.22982 (37) 0.000368 (0) 0
II(a) −2.77888 (38) −0.007329 (1) 0
II(b) −4.55277 (30) −0.002036 (0) −0.009008 (1)
II(c) −9.34180 (83) −0.005246 (1) −0.019642 (2)
III 10.7934 (27) 0.04504 (14) 0
IV(a) 123.78551 (44) 0.038513 (11) 0.083739 (36)
IV(b) −0.4170 (37) 0.006106 (31) 0
IV(c) 2.9072 (44) −0.01823 (11) 0
IV(d) −4.43243 (58) −0.015868 (37) 0
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FIG. 2. Self-energy-like diagrams representing 32 gauge-invariant subsets contributing to the lepton g − 2 at the tenth order.
Solid lines represent lepton lines propagating in a weak magnetic field.

Over the period of more than nine years we have numerically evaluated all 32 gauge-invariant sets of diagrams that

contribute to a
(10)
µ [22, 37–40], whose representative diagrams are shown in Fig. 2. The results for mass-dependent

terms are summarized in Table II. Some simple diagrams were analytically evaluated [41–44]. The results are
consistent with our numerical ones.

From the data listed in this Table and the value of A
(10)
1 from Ref. [37], we obtain the complete tenth-order result:

a(10)µ = 9.168 (571) + 742.18 (87)− 0.068 (5) + 2.011 (10)

= 753.29 (1.04). (11)

The uncertainty 1.04 is attributed entirely to the statistical fluctuation in the Monte-Carlo integration of Feynman
amplitudes by VEGAS [45]. This is 20 times more precise than the previous estimate, 663 (20), obtained in the leading-
logarithmic approximation [22]. This is mainly because we had underestimated the magnitude of the contribution of
the Set III(a). Note also that (11) is about 4.5 s.d. larger than the leading-log estimate. The numerical values of

(α/π)(n)a
(2n)
µ for n = 1, 2, · · · , 5 are summarized in Table III.

In order to evaluate aµ(QED) using (7), a precise value of α is needed. At present, the best non-QED α is the
one obtained from the measurement of h/mRb [46], combined with the very precisely known Rydberg constant and
mRb/me [33]:

α−1(Rb) = 137.035 999 049 (90) [0.66 ppb]. (12)

Actually, we have a more precise value of α which is derived from the measurement [47, 48] and theory of the electron
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TABLE II. Tenth-order mass-dependent contribution to the muon g − 2 from 31 gauge-invariant subsets shown in Fig. 2. The

mass-dependence of A
(10)
3 is A

(10)
3 (mµ/me, mµ/mτ ).

set A
(10)
2 (mµ/me) A

(10)
2 (mµ/mτ ) A

(10)
3

I(a) 22.566 973 (3) 0.000 038 (0) 0.017 312 (1)
I(b) 30.667 091 (3) 0.000 269 (0) 0.020 179 (1)
I(c) 5.141 395 (1) 0.000 397 (0) 0.002 330 (0)
I(d) 8.8921 (11) 0.000 388 (0) 0.024 487 (2)
I(e) −0.9312 (24) 0.000 232 (0) 0.002 370 (0)
I(f) 3.685 049 (90) 0.002 162 (0) 0.023 390 (2)
I(g) 2.607 87 (72) 0.001 698 (0) 0.002 729 (1)
I(h) −0.5686 (11) 0.000 163 (1) 0.001 976 (3)
I(i) 0.0871 (59) 0.000 024 (0) 0
I(j) −1.263 72 (14) 0.000 168 (1) 0.000 110 (5)
II(a) −70.4717 (38) −0.018 882 (8) −0.290 853 (85)
II(b) −34.7715 (26) −0.035 615 (20) −0.127 369 (60)
II(c) −5.385 75 (99) −0.016 348 (14) −0.040 800 (51)
II(d) 0.4972 (65) −0.007 673 (14) 0
II(e) 3.265 (12) −0.038 06 (13) 0
II(f) −77.465 (12) −0.267 23 (73) −0.502 95 (68)
III(a) 109.116 (33) 0.283 000 (32) 0.891 40 (44)
III(b) 11.9367 (45) 0.143 600 (10) 0
III(c) 7.37 (15) 0.1999 (28) 0
IV −38.79 (17) −0.4357 (25) 0
VI(a) 629.141 (12) 0.246 10 (18) 2.3590 (18)
VI(b) 181.1285 (51) 0.096 522 (93) 0.194 76 (26)
VI(c) −36.58 (12) −0.2601 (28) −0.5018 (89)
VI(d) −7.92 (60) 0.0818 (17) 0
VI(e) −4.32 (14) −0.035 94 (32) −0.1122 (24)
VI(f) −38.16 (15) 0.043 47 (85) 0.0659 (31)
VI(g) 6.96 (48) −0.044 51 (96) 0
VI(h) −8.55 (23) 0.004 85 (46) 0
VI(i) −27.34 (12) −0.003 45 (33) −0.0027 (11)
VI(j) −25.505 (20) −0.011 49 (33) −0.016 03 (58)
VI(k) 97.123 (62) 0.002 17 (16) 0

g − 2 [37]:

α−1(ae) = 137.035 999 1736 (68)(46)(26)(331)

[0.25 ppb] , (13)

where the first three uncertainties are due to the eighth-order term, tenth-order term, and the hadronic and electroweak
terms, involved in the evaluation of ae. The fourth uncertainty comes from the measurement of ae. At present the
difference between (12) and (13) is much smaller than the current uncertainty in the measurement of aµ so that one
may use either one of these two. However, some caution must be exercised to employ α−1(ae) to calculate aµ, when
more accurate experiment of aµ becomes available, because theoretical calculation of ae is strongly correlated with
that of aµ.
Substituting (9), (10), and (11) in Eq. (7) and using (12), we obtain

aµ(QED,Rb) = 116 584 718 951 (9)(19)(7)(77)× 10−14 , (14)

where the uncertainties are from the lepton mass ratios, the eighth-order term, the tenth-order term, and the value
of α in (12), respectively. If we use the value of α in (13) instead, we get

aµ(QED, ae) = 116 584 718 845 (9)(19)(7)(30)× 10−14 . (15)

TABLE III. Contributions to muon g−2 from QED perturbation term a
(2n)
µ (α/π)n × 1011. They are evaluated with two values

of the fine-structure constant determined by the Rb experiment and by the electron g − 2 (ae).

order with α−1(Rb) with α−1(ae)
2 116 140 973.318 (77) 116 140 973.212 (30)
4 413 217.6291 (90) 413 217.6284 (89)
6 30 141.902 48 (41) 30 141.902 39 (40)
8 381.008 (19) 381.008 (19)
10 5.0938 (70) 5.0938 (70)

aµ(QED)× 1011 116 584 718.951 (80) 116 584 718.845 (37)
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Note that the uncertainties of the lepton mass ratios, the eighth-order term, the tenth-order terms, and α(ae) are
improved by factors 1.7, 1.3, 20, and 1.5, respectively, compared with aµ(QED, ae) given in Eq. (99) of Ref. [49].
The difference between (14) and (15) is less than 1.2 × 10−12 so that we may use either one as far as comparison

with the current experimental data is concerned.

In view of the rather large value of A
(10)
2 (mµ/me) one might wonder how large A

(12)
2 (mµ/me) might be. As a matter

of fact it is not difficult to estimate its size. For this purpose note that the dominant contribution to A
(8)
2 (mµ/me)

comes from the Group IV(a) and the dominant contribution to A
(10)
2 (mµ/me) comes from the Set VI(a). Both are

integrals obtained by inserting several second-order vacuum-polarization loops Π2 into the virtual photon lines of the

sixth-order diagram A
(6)
2 (mµ/me; l-l ) which contains a light-by-light scattering electron loop. Analogously the leading

contribution to the twelfth-order term will come from insertion of three Π2’s in A
(6)
2 (mµ/me; l-l ), namely,

A
(12)
2 (mµ/me) ∼ A

(6)
2 (mµ/me; l-l )

×

{

2

3
ln

(

mµ

me

)

−

5

9

}3

× 10 (16)

and

A
(12)
2 (mµ/me)×

(α

π

)6

∼ 0.8× 10−12, (17)

noting that A
(6)
2 (mµ/me; l-l ) ∼ 20 and the factor 10 accounts for the possible ways of insertion of Π2. Including the

contribution of other diagrams, the size of the 12th-order term might be as large as 10−12. This is larger than the
uncertainty of the 10th-order term in (14) so that it would be desirable to obtain at least a crude evaluation of this
term.
Adding (3), (4), (5), (6), and (14), and using α from (12), the theoretical value of aµ in the standard model is given

by

aµ(SM) = 116 591 840 (59)× 10−11. (18)

We have therefore

aµ(exp)− aµ(SM) = 249 (87)× 10−11. (19)

The size of discrepancy between theory and experiment has not changed much, since the tenth-order QED contribu-
tion is not a significant source of theoretical uncertainties. Let us emphasize, however, that the complete calculation

of a
(10)
µ enables us to concentrate on improving the precision of the hadronic contributions.
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