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We study the sudden expansion of spin-imbalanced ultrdatiide fermions with attractive interactions in
one dimension after turning off the longitudinal confiningtgntial. We show that the momentum distribution
functions of majority and minority fermions quickly appobastationary values due to a quantum distillation
mechanism that results in a spatial separation of pairs ajdrity fermions. As a consequence, Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) correlations are lost duringtexpansion. Furthermore, we argue that the shape of
the stationary momentum distribution functions can be tstded by relating them to the integrals of motion in
this integrable quantum system. We discuss our result®indghtext of proposals to observe FFLO correlations,
related to recent experiments by Liabal., Nature467, 567 (2010).
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The combination of strong correlations and quantum fluctuis to let the gas expand in the 1D lattice after turning off the
ations makes one-dimensional (1D) systems the host ofeexotiongitudinal confining potential, and then measure the den-
phases and physical phenomena[l, 2]. Those phases and pléy profiles or the MDFs of the independent species and/or
nomena, in many occasions first predicted theoreticallygha pairs after some expansion time. Some aspects of such an
been observed in condensed matter experiments and have lexpansion experiment have already been successfullyedarri
gun to be studied with ultracold atomic gases [2]. A sys-out in 1D tubes [30, 31] as well as in 2D and 3D optical lat-
tem of particular interest in recent years has been the spitices [32], namely the independent control over lattice tned
imbalanced 1D Fermi gas. Following theoretical predidiion trapping potential and the measurement of the density pro-
[3-9], its grand canonical phase diagram has recently bediiles after the expansion. For 1D gases, interaction effects
investigated experimentally [10]. The major interest iirsth during the expansion cannot in general be neglected, lgadin
model comes from the fact that its entire partially polatdize to fundamentally different behavior of observables betore
phase has been theoretically shown [5, 6, 11-15] (for awgvie after the gas has expanded. For example, the expansion of
see [16]) to be the 1D-analogue of the Fulde-Ferrell-Larkin the Tonks-Girardeau gas in 1D results in a bosonic gas with
Ovchinnikov (FFLO) state [17, 18]. The FFLO phase wasa fermionic MDF [33—35], and initially incoherent (insuat
introduced to describe a possible equilibrium state in Wwhic ing) states of bosons [36, 37] and fermions [38] can develop
magnetism and superconductivity coexist thanks to thederm quasi-long range correlations during the expansion.

tion of pairs with finite center-of-mass momentumleadingto  The question we are set to address is the fate of the MDFs of
spatially oscillating order parameter. The existence ohsal  fermions and pairs during an expansion in one dimension, as
phase has remained controversial in dimensions higher thagescribed by the attractive Hubbard model. We use a combi-
one in theoretical studies [19-21], while experiments haveyation of numerical simulations, based on the time-depeinde
found no evidence of the FFLO phase in three'dimenSionadlensiw matrix renormalization group approa(ﬂcWRG)
systems [22, 23]. [39, 40], and analytical (Bethe-Ansatz) results. We firstvgh

An important challenge in ultracold fermion experiments,that the MDFs of majority and minority fermions become sta-
which may have already realized the FFLO state [10], is tdtionary after a relatively short expansion time~ Lg/J,
confirm the existence of FFLO correlations (for recent pro-whereL, is the initial size of the cloud and is the hopping
posals seee.g, [24-27]). A direct measurement of the pair amplitude. For strong interactions, we explain this betawi
momentum distribution function (MDF) in the partially po- terms of a quantum distillation process [41], as a consetpien
larized state [5, 6, 14] has been suggested to provide sudf which FFLO correlations are destroyed during the expan-
evidence [28]. However, this remains very difficult becausesion. Finally, we discuss how these stationary MDFs can be
after turning off all confining potentials, the transverspan-  theoretically understood within the framework of the Bethe
sion (in the directions of very tight confinement) dominatesAnsatz. Our results suggest that the final form of the MDFs of
over the longitudinal one [29]. Another interesting po#iib  minority and majority fermions are related to the distribos



of Bethe-Ansatz rapidities (a full set of conserved quagjt 0.047U=103, N=8, p=05
of this integrable lattice system. H o 0lkm g
The Hubbard model (in standard notation [42]) reads: Z£0.02- ~ \\ “No.
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/=1 /=1 -—- 1J=0
As the initial state, we always take the ground state of a — =20 .
. - - - tJ=80 ! \
trapped system. In the main text, we focus on a box trap, =< 0.01- /! |
i.e,, particles confined into a region of lengthy while we L TN 0 20 40 60
present results for the expansion from a harmonic trap inthe ~  p——77_ S ‘ ST L :me tJ
supplementary material [43]. We study lattices wittsites, 0 L ©
N particles, and a global polarization pf= (N — N})/N, 0.01- <& -\'\--"
whereN, = > ,(ns). All positions are given in units of Ci* L
the lattice spacing and momenta in inverse units of theckatti Y AR v '\ B “1‘0 ——
spacing b = 1). y time tJ
The expansion is triggered by suddenly turning off the con- O 0 T
fining potential, thus allowing particles to expand in the la K

tice. We then follow the time-evolution using the numeiiigal
exactt-DMRG algorithm [39, 40]. We use a Krylov-space FIG. 1: (Color online) MDF for the expansion from a box trdp £
based time-evolution method and enforce discarded weights10J, N = 8, p = 0.5, Lo = 10): (&) ng,1, (b) nx,y, and (C)ng .
of 10~* or smaller with a time-step aoft = 0.25/.J. Our  Theinsets show the differenc® (A =1, |, p, see text) between the
main focus is on the time-evolution of the three MDFs: theMDF at atimet compared to the one at the largest time reached in
ones for majority ¢ — 1) and minority fermionsd = 1), de- the .s.lmulatlon. The vertical lines in the main panel in (cyknihe

. ; position of the FFLO wave-vectd = +mnp.
noted byny , and the pair MDFp,, ,. These functions are
computed from the corresponding one-particle=£t, ]) or
one-pair f = p) density matrices via a Fourier transform

g\ = % Z ei(é_m)kWZ,AwmA) (2)

l,m

in the expanding cloud. In the FFLO statg, , has maxima
atQ = +(kpr+—kry) [5]. These are visible in the= 0 curve
(dashed line), where:() are marked by vertical lines. As the
comparison ofy, ,,(t > 0) with the initial n, ,,(t = 0) shows,
wherey! = 020, 1/,}@ = TCZ ,andistandsfort, |,p. We  the peaks at-Q rapidly disappear, andy , (1) becomes nar-

normalize the MDFs so théE;;”k,A = N, (note that\, = rower. In addition, new and shallower peaks fornkat Q.
> (nerney), ie, it is equal to the total double occupancy in Since we do not find those peaks at the same valuésfof
the system). other values ofN whenN/L, andp are the same, and we

For the expansion from a box, we concentrate on an initiafo not find them for all values o/, N/Lo, andp studied,
density fixed ton = N/Ly = 0.8. In ourt-DMRG sim-  they appear to be related to finite-size effects. Hence,dhbe d
ulations, which were carried out fa¥ = 8 and N = 16 ble peak structure imy,(t = 0), which makes evident the
(Lo = 10 and 20, respectively) and various valuedfwe  presence of FFLO correlations in the initial state, is fotmd
were able to reach times of ordgr, ~ 80/J forlargeU and  disappear during the expansion. Even though the FFLO corre-
tmax ~ 40/.J for intermediate values dff ~ 4.J. t,., also lations are lost during the expansion, the integral oveptie
depends omp, with small values op being more demanding. MDF, which equals the total double occupancy, does not van-

Typical results for the three MDFs of interest are presentedsh. This implies that not all interaction energy is conedrt
in Fig. 1 forU = —10J andp = 0.5 (corresponding to into kinetic energy and that some fraction of the originatpa
N; = 6 andN, = 2; see the supplementary material for remains by the time the MDFs have become stationary, which
more data [43]). During the time evolution, they are all seenn experiments could be probed by measuring the double oc-
to quickly approach time-independentforms. In Fig. 1¢a¥ i cupancy.
apparent that the MDF of the majority fermions becomes nar- In order to quantify how the three MDFs above approach
rower and develops small oscillations in the vicinitykof= 0 stationary forms, in the insets in Fig. 1, we plat (¢) =
as time passes. We find that those oscillations become smallg_, |14 (t) — 7x ) (fmax)|/ Dok k) (tmax) VS t. These re-
in amplitude and get restricted to smaller valuek afterlong  sults make apparent that the approach is close to exponen-
expansion times, e., they seem to be a transient feature nottial for n; + andny [insets in Fig. 1(a) and 1(b)], while it
present in the asymptotic distributions. The momenturmieist is power law forn; , [inset in Fig. 1(c)] [44]. Remarkably,
bution of the minority fermions [Fig. 1(b)], on the other lsan for the parameters of Fig. 1, alreadytat ~ 10, all A, are
becomes broader during the time evolution. < 10%. This means that the stationary MDFs obtained in

The time evolution of the MDF of the pairs, depicted in this work should be achievable in current optical latticeips
Fig. 1(c), yields information on the fate of FFLO correlatso  [32]. A comparison between expansions from different box
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| oy=10m as opposed to exponential, relaxation observedfgy(t) in
<S> 1 Fig. 1(c).
A In a recent work [45], extrema in the spin-density of the
i) expanding gas were observed in numerical calculationgusin
o

L
(a) t=0, p=0.75

£

various approaches. By comparing with the time-dependence
-0.2 of the order parameter within a time-dependent Bogoliubov-

. deGennes approach, it was argued that they are related to
L\ FFLO correlations. Our results show that, in a lattice sys-
280 220 240 260 280 30 tem, the nodal structure of the FFLO state is ultimately lost

sitel as the system expands. Note, however, that in Ref. [45] the

FIG. 2: (Color online) Natural orbitalo| corresponding to the ~Main focus was on rather small polarizatignf3, 4, 8] lead-
largest eigenvalue of the pair-pair correlafdft, j) (dashed lines) N to a wide partially polarized core before the expansion.
and spin densityS?) (solid lines). (a)t = 0, (b) tJ = 10. These  We therefore expect the quantum distillation mechanism to
results are fol/ = —10J, Lo = 20, N = 16 andp = 0.75, take much longer to depolarize the core than what has so far
corresponding taVy = 14 and N, = 2. been reached in numerical simulations [45], leaving thieca
as an open question.
We are now in a position to explain the anticorrelated be-

sizes suggests that the emerging time scale in the obsesvabhavior ofn;, + andny,, | mentioned in the discussion of Fig. 1.
with exponential relaxation is proportional f@y. The origin  For large values of, N, is essentially equal t&, and is ap-
of that time scale will be discussed below. proximately unchanged during the expansion, rendering the

While we are focusing the discussion on the case of thénteraction energy almost time independent. This imples t
expansion from a box trap, we stress that the results for thalso the kinetic energ¥iin = —2J Y, cosk(ni 4 + ng,y)
MDFs in an expansion from a harmonic trap are quite sim4is approximately conserved, which is only possible if the tw
ilar (for an example, see the supplementary material [43])MDFs behave in the opposite way during the expansion. The
Namely, we observe a comparably fast convergence of thbroadening of the minority MDF, | with respect to the ini-
MDFs to a stationary form and the disappearance of the peakil state is a direct consequence of the spatial separafion
at+Q inny . The latter indicates the disappearance of FFLOexcess fermions from the pairs, leaving the latter confined i
correlations. the center of the cloud. Since in the center the local polar-

To understand how the FFLO state breaks down as the gagation decreases, the stationary forrmgf, is well approxi-
expands, we calculate the eigenvecbgrof the pair-pair cor- mated by the equilibrium one for equal populatiovis= N
relator P(¢,m) = <1/);f7p1/)m,p> that corresponds to the largest instead ofNy > N, [43].
eigenvalue|®,|, shown in Fig. 2(a), unveils the spatial struc-  The fact that the MDFs become stationary after the expan-
ture of the quasi-condensate in the initial state: it hassail-o  sion from a box or a harmonic trap is in itself not surprisiag),
latory behavior with nodes (see also Ref. [5]). In these spde in the limit of long expansion times, the cloud becomes very
the spin density has its maxima to accommodate the majodilute with, for the attractive case, the typical intere
ity fermions (Fig. 2(a), see also [43]), indicative of theérsp  distance being much larger than the bound-state size. Hence
density wave character with a modulation(@f)~! in the =~ one may assume that pairs and unpaired particles are essen-
FFLO state. During the expansion, the nodg9ig| disappear tially noninteracting. The MDF in such an asymptotic limit
while |®,| develops a maximum dt/2, exceeding its initial ~ should be determined by the initial conditions right aftee t
value [see Fig. 2(b)]. The latter is a consequence of a quarguench. For instance, for generic models, the total energy
tum distillation mechanism, described in Ref. [41] {ér> 0,  (which is conserved during the expansion) plays a fundamen-
which allows the unpaired fermions to move away from thetal role in determining the expansion dynamics (see Rel. [46
center of the systemi.€., they escape from the nodes of for a related work fol/' > 0). For an integrable model, such
|®o(t = 0)|). Loosely speaking, during first-order processesas the (attractive) Hubbard model of Eq. (1), all integrdls o
unpaired fermions exchange their positions with the pairs (motion are in principle known from the Bethe Ansatz and are
minority fermion hops towards the center of the trap), allow conserved during the expansion [42]. We argue below how
ing the former to expand while the pairs move towards theo interpret the shape of certain stationary MDFs in terms of
center of the trap. This occurs over a time scale proportionasuch integrals of motion. This is closely related to the prev
to Lo and inversely proportional t, which explains the time  ously studied fermionization of the MDF of an expanding gas
scale observed in the exponential approach of the majoritpf hard-core bosons [33-35].
and minority fermions to their stationary values. Once the For the model studied here, we first note that the for-
unpaired fermions have spatially separated themselves fromation of a distinct minimum in the difference distribution
the pairs, they form a non-interacting gas whose MDF is staén;, = nx+ — ng | [see Figs. 3(a) and (b)] is reminiscent of
tionary. On much longer time scales (assuming> 4.J), the corresponding distribution of real-valued chargedtipis
we expect the pairs to slowly expand as well. This transien{for intermediatel/) in the ground state in a box. From the
dynamics of the pairs may be the reason for the power-lawpoint of view of the rapidity distributions, they need to ke d

;




termined right after turning off the trap and the subsequent (a) U=-4J, p=0.5 (b) U=-10J,p=0.5'

expansion does not play any role; it is the MDFs which will B P 1 il g iz 7
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valued charge rapidities:{, andx,) which correspond to un- 0.01 A I Bgﬂpﬁ{éi;ties |

paired fermions and pairs, respectively=£ 1, ..., Ny — N, 2

o=1,...,2N, with k, andx?, appearing pairwise). <

To calculate the effect of the quench of the trapping poten- 0.003-

tial exactly is in principle possible but complicated in pra

tice [51], so we will resort to some simplifications. To start 0

we assume that the number of pairs is conserved during the

guench, and thus no pure-spin excitations are produced. Fur

ther, we use the observation that the overlap between the prg|G. 3: (Color online) Comparison of the stationary MDfs, =

guench eigenstate and the post-quench state has a maximum, — ni, . [(@),(b)] andny,, [(c),(d)] for the expansion from a box

amplitude for components of the latter with the same set ofith N = 8, p = 0.5 (corresponding t&V+ = 6, N, = 2) [(a),(c):

rapidities [51]. We then identify, asymptotically, the is U = —4J, (0),(d): U = —10.J] to the form expected from the ra-

bution of real-valued charge rapidities with that of unpeir Pidities known from the Bethe-Ansatz:DMRG (solid lines), mod-

fermions 6n.). and of the real part of comolex-valued (strin els _d_|scussed in th(_e text (dashed lines). The vertical linask the
0 _k.)’_ ) P .. P i ( 9) positions of the rapidities.

charge rapidities with that of minority fermions,(;) since

they remain paired. Finally, we model the quench by convolv-

ing the pre-quench distributions, = (1/2)3.,6(k+£.)  (SL), and the Office of Naval Research (MR).

andps = (1/2) " 6(k £+ Rek,) with the (periodized) ker-
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