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We study the sudden expansion of spin-imbalanced ultracoldlattice fermions with attractive interactions in
one dimension after turning off the longitudinal confining potential. We show that the momentum distribution
functions of majority and minority fermions quickly approach stationary values due to a quantum distillation
mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of
the stationary momentum distribution functions can be understood by relating them to the integrals of motion in
this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations,
related to recent experiments by Liaoet al., Nature467, 567 (2010).
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The combination of strong correlations and quantum fluctu-
ations makes one-dimensional (1D) systems the host of exotic
phases and physical phenomena [1, 2]. Those phases and phe-
nomena, in many occasions first predicted theoretically, have
been observed in condensed matter experiments and have be-
gun to be studied with ultracold atomic gases [2]. A sys-
tem of particular interest in recent years has been the spin
imbalanced 1D Fermi gas. Following theoretical predictions
[3–9], its grand canonical phase diagram has recently been
investigated experimentally [10]. The major interest in this
model comes from the fact that its entire partially polarized
phase has been theoretically shown [5, 6, 11–15] (for a review,
see [16]) to be the 1D-analogue of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [17, 18]. The FFLO phase was
introduced to describe a possible equilibrium state in which
magnetism and superconductivity coexist thanks to the forma-
tion of pairs with finite center-of-mass momentum leading toa
spatially oscillating order parameter. The existence of such a
phase has remained controversial in dimensions higher than
one in theoretical studies [19–21], while experiments have
found no evidence of the FFLO phase in three-dimensional
systems [22, 23].

An important challenge in ultracold fermion experiments,
which may have already realized the FFLO state [10], is to
confirm the existence of FFLO correlations (for recent pro-
posals see,e.g., [24–27]). A direct measurement of the pair
momentum distribution function (MDF) in the partially po-
larized state [5, 6, 14] has been suggested to provide such
evidence [28]. However, this remains very difficult because
after turning off all confining potentials, the transverse expan-
sion (in the directions of very tight confinement) dominates
over the longitudinal one [29]. Another interesting possibility

is to let the gas expand in the 1D lattice after turning off the
longitudinal confining potential, and then measure the den-
sity profiles or the MDFs of the independent species and/or
pairs after some expansion time. Some aspects of such an
expansion experiment have already been successfully carried
out in 1D tubes [30, 31] as well as in 2D and 3D optical lat-
tices [32], namely the independent control over lattice andthe
trapping potential and the measurement of the density pro-
files after the expansion. For 1D gases, interaction effects
during the expansion cannot in general be neglected, leading
to fundamentally different behavior of observables beforeand
after the gas has expanded. For example, the expansion of
the Tonks-Girardeau gas in 1D results in a bosonic gas with
a fermionic MDF [33–35], and initially incoherent (insulat-
ing) states of bosons [36, 37] and fermions [38] can develop
quasi-long range correlations during the expansion.

The question we are set to address is the fate of the MDFs of
fermions and pairs during an expansion in one dimension, as
described by the attractive Hubbard model. We use a combi-
nation of numerical simulations, based on the time-dependent
density matrix renormalization group approach (t-DMRG)
[39, 40], and analytical (Bethe-Ansatz) results. We first show
that the MDFs of majority and minority fermions become sta-
tionary after a relatively short expansion time,t ∼ L0/J ,
whereL0 is the initial size of the cloud andJ is the hopping
amplitude. For strong interactions, we explain this behavior in
terms of a quantum distillation process [41], as a consequence
of which FFLO correlations are destroyed during the expan-
sion. Finally, we discuss how these stationary MDFs can be
theoretically understood within the framework of the Bethe-
Ansatz. Our results suggest that the final form of the MDFs of
minority and majority fermions are related to the distributions
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of Bethe-Ansatz rapidities (a full set of conserved quantities)
of this integrable lattice system.

The Hubbard model (in standard notation [42]) reads:

H0 = −J
L−1∑

ℓ=1

(c†ℓ+1,σcℓ,σ +H.c.) + U
L∑

ℓ=1

nℓ↑nℓ↓ . (1)

As the initial state, we always take the ground state of a
trapped system. In the main text, we focus on a box trap,
i.e., particles confined into a region of lengthL0 while we
present results for the expansion from a harmonic trap in the
supplementary material [43]. We study lattices withL sites,
N particles, and a global polarization ofp = (N↑ − N↓)/N ,
whereNσ =

∑
ℓ〈nℓσ〉. All positions are given in units of

the lattice spacing and momenta in inverse units of the lattice
spacing (~ = 1).

The expansion is triggered by suddenly turning off the con-
fining potential, thus allowing particles to expand in the lat-
tice. We then follow the time-evolution using the numerically
exact t-DMRG algorithm [39, 40]. We use a Krylov-space
based time-evolution method and enforce discarded weights
of 10−4 or smaller with a time-step ofδt = 0.25/J . Our
main focus is on the time-evolution of the three MDFs: the
ones for majority (σ = ↑) and minority fermions (σ = ↓), de-
noted bynk,σ and the pair MDF,nk,p. These functions are
computed from the corresponding one-particle (λ =↑, ↓) or
one-pair (λ = p) density matrices via a Fourier transform

nk,λ =
1

L

∑

ℓ,m

ei(ℓ−m)k〈ψ†
ℓ,λψm,λ〉 (2)

whereψ†
ℓ,σ = c†ℓ,σ,ψ†

ℓ,p = c†ℓ,↑c
†
ℓ,↓ andλ stands for↑, ↓, p. We

normalize the MDFs so that
∑

k nk,λ = Nλ (note thatNp =∑
ℓ〈nℓ↑nℓ↓〉, i.e., it is equal to the total double occupancy in

the system).
For the expansion from a box, we concentrate on an initial

density fixed ton = N/L0 = 0.8. In our t-DMRG sim-
ulations, which were carried out forN = 8 andN = 16
(L0 = 10 and 20, respectively) and various values ofU , we
were able to reach times of ordertmax ∼ 80/J for largeU and
tmax ∼ 40/J for intermediate values ofU ∼ 4J . tmax also
depends onp, with small values ofp being more demanding.

Typical results for the three MDFs of interest are presented
in Fig. 1 for U = −10J and p = 0.5 (corresponding to
N↑ = 6 andN↓ = 2; see the supplementary material for
more data [43]). During the time evolution, they are all seen
to quickly approach time-independent forms. In Fig. 1(a), it is
apparent that the MDF of the majority fermions becomes nar-
rower and develops small oscillations in the vicinity ofk = 0
as time passes. We find that those oscillations become smaller
in amplitude and get restricted to smaller values ofk after long
expansion times,i.e., they seem to be a transient feature not
present in the asymptotic distributions. The momentum distri-
bution of the minority fermions [Fig. 1(b)], on the other hand,
becomes broader during the time evolution.

The time evolution of the MDF of the pairs, depicted in
Fig. 1(c), yields information on the fate of FFLO correlations
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FIG. 1: (Color online) MDF for the expansion from a box trap (U =
−10J , N = 8, p = 0.5, L0 = 10): (a)nk,↑, (b)nk,↓, and (c)nk,p.
The insets show the difference∆λ (λ =↑, ↓, p, see text) between the
MDF at a timet compared to the one at the largest time reached in
the simulation. The vertical lines in the main panel in (c) mark the
position of the FFLO wave-vectorQ = ±πnp.

in the expanding cloud. In the FFLO state,nk,p has maxima
atQ = ±(kF↑−kF↓) [5]. These are visible in thet = 0 curve
(dashed line), where±Q are marked by vertical lines. As the
comparison ofnk,p(t > 0) with the initialnk,p(t = 0) shows,
the peaks at±Q rapidly disappear, andnk,p(t) becomes nar-
rower. In addition, new and shallower peaks form atk < Q.
Since we do not find those peaks at the same values ofk for
other values ofN whenN/L0 andp are the same, and we
do not find them for all values ofU , N/L0, andp studied,
they appear to be related to finite-size effects. Hence, the dou-
ble peak structure innk,p(t = 0), which makes evident the
presence of FFLO correlations in the initial state, is foundto
disappear during the expansion. Even though the FFLO corre-
lations are lost during the expansion, the integral over thepair
MDF, which equals the total double occupancy, does not van-
ish. This implies that not all interaction energy is converted
into kinetic energy and that some fraction of the original pairs
remains by the time the MDFs have become stationary, which
in experiments could be probed by measuring the double oc-
cupancy.

In order to quantify how the three MDFs above approach
stationary forms, in the insets in Fig. 1, we plot∆λ(t) =∑

k |nk,λ(t) − nk,λ(tmax)|/
∑

k nk,λ(tmax) vs t. These re-
sults make apparent that the approach is close to exponen-
tial for nk,↑ andnk,↓ [insets in Fig. 1(a) and 1(b)], while it
is power law fornk,p [inset in Fig. 1(c)] [44]. Remarkably,
for the parameters of Fig. 1, already attJ ∼ 10, all ∆λ are
. 10%. This means that the stationary MDFs obtained in
this work should be achievable in current optical lattice setups
[32]. A comparison between expansions from different box
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FIG. 2: (Color online) Natural orbital|Φ0| corresponding to the
largest eigenvalue of the pair-pair correlatorP (ℓ, j) (dashed lines)
and spin density〈Sz

i 〉 (solid lines). (a)t = 0, (b) tJ = 10. These
results are forU = −10J , L0 = 20, N = 16 and p = 0.75,
corresponding toN↑ = 14 andN↓ = 2.

sizes suggests that the emerging time scale in the observables
with exponential relaxation is proportional toL0. The origin
of that time scale will be discussed below.

While we are focusing the discussion on the case of the
expansion from a box trap, we stress that the results for the
MDFs in an expansion from a harmonic trap are quite sim-
ilar (for an example, see the supplementary material [43]).
Namely, we observe a comparably fast convergence of the
MDFs to a stationary form and the disappearance of the peaks
at±Q in nk,p. The latter indicates the disappearance of FFLO
correlations.

To understand how the FFLO state breaks down as the gas
expands, we calculate the eigenvectorΦ0 of the pair-pair cor-
relatorP (ℓ,m) = 〈ψ†

ℓ,pψm,p〉 that corresponds to the largest
eigenvalue.|Φ0|, shown in Fig. 2(a), unveils the spatial struc-
ture of the quasi-condensate in the initial state: it has an oscil-
latory behavior with nodes (see also Ref. [5]). In these nodes,
the spin density has its maxima to accommodate the major-
ity fermions (Fig. 2(a), see also [43]), indicative of the spin-
density wave character with a modulation of(2Q)−1 in the
FFLO state. During the expansion, the nodes in|Φ0| disappear
while |Φ0| develops a maximum atL/2, exceeding its initial
value [see Fig. 2(b)]. The latter is a consequence of a quan-
tum distillation mechanism, described in Ref. [41] forU > 0,
which allows the unpaired fermions to move away from the
center of the system (i.e., they escape from the nodes of
|Φ0(t = 0)|). Loosely speaking, during first-order processes
unpaired fermions exchange their positions with the pairs (a
minority fermion hops towards the center of the trap), allow-
ing the former to expand while the pairs move towards the
center of the trap. This occurs over a time scale proportional
toL0 and inversely proportional toJ , which explains the time
scale observed in the exponential approach of the majority
and minority fermions to their stationary values. Once the
unpaired fermions have spatially separated themselves from
the pairs, they form a non-interacting gas whose MDF is sta-
tionary. On much longer time scales (assumingU > 4J),
we expect the pairs to slowly expand as well. This transient
dynamics of the pairs may be the reason for the power-law,

as opposed to exponential, relaxation observed fornk,p(t) in
Fig. 1(c).

In a recent work [45], extrema in the spin-density of the
expanding gas were observed in numerical calculations using
various approaches. By comparing with the time-dependence
of the order parameter within a time-dependent Bogoliubov-
deGennes approach, it was argued that they are related to
FFLO correlations. Our results show that, in a lattice sys-
tem, the nodal structure of the FFLO state is ultimately lost
as the system expands. Note, however, that in Ref. [45] the
main focus was on rather small polarizationsp [3, 4, 8] lead-
ing to a wide partially polarized core before the expansion.
We therefore expect the quantum distillation mechanism to
take much longer to depolarize the core than what has so far
been reached in numerical simulations [45], leaving this case
as an open question.

We are now in a position to explain the anticorrelated be-
havior ofnk,↑ andnk,↓ mentioned in the discussion of Fig. 1.
For large values ofU ,Np is essentially equal toN↓ and is ap-
proximately unchanged during the expansion, rendering the
interaction energy almost time independent. This implies that
also the kinetic energyEkin = −2J

∑
k cos k(nk,↑ + nk,↓)

is approximately conserved, which is only possible if the two
MDFs behave in the opposite way during the expansion. The
broadening of the minority MDFnk,↓ with respect to the ini-
tial state is a direct consequence of the spatial separationof
excess fermions from the pairs, leaving the latter confined in
the center of the cloud. Since in the center the local polar-
ization decreases, the stationary form ofnk,↓ is well approxi-
mated by the equilibrium one for equal populationsN↑ = N↓

instead ofN↑ > N↓ [43].
The fact that the MDFs become stationary after the expan-

sion from a box or a harmonic trap is in itself not surprising,as
in the limit of long expansion times, the cloud becomes very
dilute with, for the attractive case, the typical inter-particle
distance being much larger than the bound-state size. Hence,
one may assume that pairs and unpaired particles are essen-
tially noninteracting. The MDF in such an asymptotic limit
should be determined by the initial conditions right after the
quench. For instance, for generic models, the total energy
(which is conserved during the expansion) plays a fundamen-
tal role in determining the expansion dynamics (see Ref. [46]
for a related work forU > 0). For an integrable model, such
as the (attractive) Hubbard model of Eq. (1), all integrals of
motion are in principle known from the Bethe Ansatz and are
conserved during the expansion [42]. We argue below how
to interpret the shape of certain stationary MDFs in terms of
such integrals of motion. This is closely related to the previ-
ously studied fermionization of the MDF of an expanding gas
of hard-core bosons [33–35].

For the model studied here, we first note that the for-
mation of a distinct minimum in the difference distribution
δnk = nk,↑ − nk,↓ [see Figs. 3(a) and (b)] is reminiscent of
the corresponding distribution of real-valued charge rapidities
(for intermediateU ) in the ground state in a box. From the
point of view of the rapidity distributions, they need to be de-
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termined right after turning off the trap and the subsequent
expansion does not play any role; it is the MDFs which will
evolve and asymptotically approach the former as the expan-
sion proceeds [47]. We can calculate the pre-quench values of
the rapidities by numerically solving the Bethe-Ansatz equa-
tions for a system of sizeL0 and open boundary conditions
[48–50]. For the ground state of the attractive Hubbard model,
there are two types of rapidities present: real- and complex-
valued charge rapidities (κν andκσ) which correspond to un-
paired fermions and pairs, respectively (ν = 1, . . . , N↑ −N↓,
σ = 1, . . . , 2N↓, with κσ andκ∗σ appearing pairwise).

To calculate the effect of the quench of the trapping poten-
tial exactly is in principle possible but complicated in prac-
tice [51], so we will resort to some simplifications. To start,
we assume that the number of pairs is conserved during the
quench, and thus no pure-spin excitations are produced. Fur-
ther, we use the observation that the overlap between the pre-
quench eigenstate and the post-quench state has a maximum
amplitude for components of the latter with the same set of
rapidities [51]. We then identify, asymptotically, the distri-
bution of real-valued charge rapidities with that of unpaired
fermions (δnk), and of the real part of complex-valued (string)
charge rapidities with that of minority fermions (nk,↓) since
they remain paired. Finally, we model the quench by convolv-
ing the pre-quench distributionsρ1 = (1/2)

∑
ν δ(k ± κν)

andρ2 = (1/2)
∑

σ δ(k ± Reκσ) with the (periodized) ker-
nels: (i) L0 sinc

2(kL0/2) for the former and (ii) a simple
Lorentzian for the latter. The first choice is inspired by the
exact result for the release of a single particle from a box,
while the second choice is done for simplicity given that the
results are relatively featureless in comparison. Illustrative re-
sults are shown in Fig. 3 and the agreement is very good, spe-
cially away from the Brillouin-zone center. Note that there
are no fitting parameters in the case ofδnk and a single fitting
parameter, the width of the Lorentzian, in the case ofnk,↓.

In conclusion, we demonstrated that the initial FFLO state
is destroyed during the expansion of an attractively interacting
partially polarized 1D Fermi gas, and that direct signatures
of the FFLO phase in the initial pair MDF are washed out
as a consequence of interactions. Nevertheless, the sudden
expansion is an interesting non-equilibrium experiment that
through the asymptotic form of the MDFs yields information
on the initial state. Our analysis suggests that the shape ofthe
MDFs can be related to the distribution of rapidities, which
constitute a full set of integrals of motion for this integrable
quantum model and fully determine the initial state. Since we
showed that the MDFs of majority and minority fermions as
well as the one of pairs rapidly take a stationary form, this
should be accessible on typical experimental time-scales.
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