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A method is presented for the unbiased numerical computation of two-particle response functions
of correlated electron materials via a solution of the dynamical mean-field equations in the presence
of a perturbing field. The power of the method is demonstrated via a computation of the Raman
B1g and B2g scattering intensities of the two dimensional Hubbard model, in parameter regimes
believed to be relevant to high-temperature superconductivity. The theory reproduces the ‘two-
magnon’ peak characteristic of the Raman intensity of the insulating parent compounds of high-Tc

copper oxide superconductors and shows how it evolves to a quasiparticle response as carriers are
added. The method can be applied in any situation where a solution of the equilibrium dynamical
mean-field equations is feasible.

PACS numbers: 71.27.+a,71.28.+d,78.30.-j,74.72.Kf,

The development of dynamical mean-field theory, first
in its single-site version [1] and then in cluster exten-
sions [2], along with its interface to band theory [3, 4],
has transformed our understanding of correlated electron
physics. In the particular case of the two-dimensional
Hubbard model, believed [5] to represent the physics of
high temperature superconductors, the method has pro-
vided new insights into the correlation-driven (‘Mott’)
metal-insulator transition [6, 7], the pseudogap regime
that separates the Mott insulator from the Fermi liquid
metal [7–10] and the existence [11–13] and properties [14–
17] of a d-wave superconducting state. However, dynam-
ical mean-field theory is based on an approximation to
the one-electron Green function G(k, ω), measurable in
angle-resolved photoemission experiments [18] while the-
oretical analysis of wide classes of experiments including
optical conductivity, Raman spectroscopy and inelastic
neutron scattering requires a vertex function whose com-
putation has proven very challenging. While the charge
vertex can be obtained analytically in simplified situa-
tions such as the Falicov-Kimball model [19], computa-
tions of the vertex for interacting electron models have
not, in practice, been carried out in full generality. Kuneš
[20] obtained the zero frequency charge and spin vertices
corresponding to single-site dynamical mean-field theory
of the Hubbard model, and Yang et al. [21] obtained
the spin, charge and superconducting vertices for larger
clusters. However, calculations [22, 23] of the full dy-
namic (ω 6= 0) response have been based on the single
site approximation and have employed truncations of the
general frequency dependence.

In this paper we present a new method for determining
the two-particle response in cluster dynamical mean-field
theory and demonstrate its effectiveness via a computa-
tion of the doping dependence of the Raman scattering
amplitude of the two-dimensional Hubbard model from
the Mott insulating to the Fermi liquid regime. Raman

spectroscopy has been of fundamental importance to high
temperature superconductivity [24] but the theoretical
description in terms of an underlying Hubbard model in-
volves vertex corrections in an essential way and has not
been systematically studied.

To introduce our method we recall salient features of
the theory of linear response [25], defined quantum me-
chanically as the leading-order difference of the expec-
tation value of an operator R̂ in the presence and ab-
sence of a probe field P . This is given by 〈R̂〉P =

Tr
[
R̂GP

]
− Tr

[
R̂Geq

]
= χRPP +O(P 2) with

χRP = −Tr

[
R̂Geq δG

−1
0

δP
Geq

]
+ Tr

[
R̂Geq δΣ

δP
Geq

]
.

(1)
Here Geq = (G−1

0 − Σeq)−1 is the equilibrium (P = 0)
Green function, related in the standard way to a bare
Green function G0 and a self energy Σ. We have omit-
ted a possible term arising from explicit dependence of
R̂ on P ; this gives rise to the ‘diamagnetic’ term in the
optical conductivity but is not otherwise relevant. The
first term in Eq. 1 gives the ‘bubble term’, computable
from knowledge of the one-electron Green function and
the bare vertex δG−1

0 /δP ; the second term, arising from
changes in the many-body physics due to the perturba-
tion, is the vertex correction of interest here.

For wide classes of strongly correlated materials,
neither perturbative diagrammatic expansions about a
mean-field solution nor partial (e.g RPA or GW) resum-
mations suffice; a fully nonperturbative treatment is re-
quired. For the one electron Green function, cluster dy-
namical mean-field theory [2] provides such a treatment.
In this theory the electron self energy Σ, a matrix in
the full single-particle Hilbert space of the problem, is
approximated in terms of a much smaller number Nc of
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functions Σαβ as

Σ ≈ Σapprox =
∑

α,β=1...Nc

φαβΣαβ . (2)

Different choices for φαβ give different versions of dynam-
ical mean-field theory while the Σαβ are the self energies
of a quantum impurity model specified by the interac-
tions of the original model and by mean-field functions(
G−1

0

)αβ
determined by the self consistency condition

(
G−1

0

)αβ
= Σαβ +

(
Tr
[
φαβ

(
G−1

0 −Σapprox

)−1
])−1

. (3)

Here the trace and inner inversion are over the single
particle Hilbert space of the full problem and the outer
inversion is in the impurity model space. All quanti-
ties may depend on the perturbation P and we compute
δΣ/δP directly by solving to first order in P .

Linearization of Eq. 3 yields the first order correc-
tion (G−1

0 )1
αβ in terms of δG−1

0 /δP (known a-priori) and

δΣαβ/δP (to be computed). From this and the im-
purity model four-point function Γ, written here for a
monochromatic perturbation of frequency Ω as

ΓΩ;αβ
β′α′ (ω, ω′) =

〈
cα(ω + Ω)c†β(ω)c

β′ (ω′)c
†
α′(ω

′ + Ω)
〉

(4)

we obtain the first order correction G1 to the impurity
model Green function as

G1
αβ(ω + Ω, ω) =T 2

∑
ω1,α′β′

ΓΩ;αβ
β′α′ (ω, ω1)(G−1

0 )1
α′β′(ω1 + Ω, ω1)

−δΩ,0Geq
αβ(ω)

∑
ω1,α′β′

Geq
α′β′(ω1)(G−1

0 )1
α′β′(ω1, ω1). (5)

From this and the linearized impurity-model Dyson equa-
tion follows δΣαβ/δP . The resulting linear equation is
solved for δΣαβ/δP , from which we obtain the desired
vertex correction δΣ/δP via Eq. 2. In our experience
the solution of the equations is stable and unique.

Previous dynamical mean-field literature introduced
[1, 26], and used [20, 22, 23, 27], a different approach, in-
verting the impurity model Bethe-Saltpeter equation to
obtain the two-particle irreducible impurity-model vertex
in terms of Γ and then using this in the lattice Bethe-
Saltpeter equation to compute the physical vertex. Our
procedure replaces the numerical inversion of the Bethe-
Saltpeter equation (which requires considerable care [20]
to avoid numerical instabilities [22, 27, 28]) by the solu-
tion of the linearized DMFT equation (which we have
found not to be problematic), and avoids the second
Bethe-Saltpeter equation by constructing the fully re-
ducible lattice vertex directly.

The key issue in the implementation is the measure-
ment and storage of Γ, which is needed in each sector
for a wide range of ω, ω1 at every relevant Ω. It is
necessary to compute Γ in a strip |ω − ω1| < ∆1 and

|ω + ω1 + Ω| < |Ω| + ∆2. ∆1,2 are increased empirically
until the final χ ceases to change on the ∼ 1% level and
we typically need ∆1 ∼ ∆2/2 of order 3-4 times a relevant
frequency scale (interaction strength or bandwidth). Γ is
measured on the imaginary time axis and the Fourier
transform to frequencies is a significant portion of the
computational burden. Computations are substantially
accelerated by a formal rearrangement which allows the
needed information to be obtained from a small set of one
dimensional Fourier transforms rather than a two dimen-
sional one, and by recent extensions of the fast Fourier
transform method to non-uniform grids [29].

FIG. 1: Raman B1g scattering intensity in the 4-site (solid
line, red online) and 8-site (dashed line, green on-line) DCA
approximations for parameters U = 7t, t′ = −0.15t, β = 10/t
and n = 1. Upper right inset: interaction strength depen-
dence of B1g Raman intensity at density n = 1 calculated
for the four site cluster. Lower two insets: momentum space
partitioning for the four- and eight-site cluster geometries con-
sidered in this paper.

To demonstrate the power of the new approach we
compute the non-resonant Raman scattering intensity of
the two dimensional Hubbard model defined by

HHub = H0 + U
∑
i

ni↑ni↓. (6)

For definiteness we take H0 =
∑
kσ (εk − µ) c†kσckσ with

εk = − 2t (cos kx + cos ky) − 4t′ cos kx cos ky with t′

= −0.15t and U = 7t. To fix the energy scale we use
t = 0.35 eV, a value generally accepted for high-Tc su-
perconductors [30].

We consider two scattering geometries: B1g, where the
electric fields of the incident and outgoing photons are di-
rected along the Brillouin zone axes (kx or ky = 0) high-
lighting the antinodal region, and B2g, where the electric
field vectors are directed along Brillouin zone diagonals
(kx = ±ky) highlighting the nodal region. The perturb-
ing terms corresponding to the B1g and B2g scattering
channels are (in the non-resonant approximation)
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H
B1g

Raman = P

[
1

2

(
∂2H0

∂k2
x

− ∂2H0

∂k2
y

)]
, (7)

H
B2g

Raman = P
∂H2

0

∂kx∂ky
. (8)

We use the dynamical cluster approximation (DCA)
[2] in which the Brillouin zone of momentum space is
partitioned into Nc equal area tiles labeled by central
momentum K and study in particular Nc = 4 and 8 (see
insets to Fig. 1). Both lattice and impurity Σ in Eq. 2
are diagonal. The lattice quantities depend on a contin-
uous momentum k, the index α = β represents cluster
momentum K and φkK = 1 if k is in tile K and zero
otherwise so the lattice trace is just a momentum inte-
gral over the tile. We solve the model on the imaginary
axis in the paramagnetic phase using the numerically ex-
act continuous-time auxiliary field (CT-AUX) impurity
solver [31] with submatrix updates [32] and analytically
continue the final χRP (iΩm) using the maximum entropy
technique [33] taking into account covariance matrices es-
timated by a jackknife procedure.
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FIG. 2: Raman B1g scattering function of isolated 4-site clus-
ter calculated at U = 8t and β = 20/t by exact diagonaliza-
tion (solid lines) and Quantum Monte Carlo (dashed lines)
for Matsubara (main panel) and real frequencies (inset).

To test the formalism we observe that if the momentum
integral is replaced by an evaluation at the central mo-
mentum K then our procedure is reduced to the solution
of an isolated cluster, which can also be solved by exact
diagonalization (ED). The main panel of Fig. 2 compares
the Matsubara axis Raman B1g scattering intensity ob-
tained by applying our procedure to the isolated four site
cluster with that obtained from a direct diagonalization
of the same isolated cluster. The results are seen to be
identical up to Monte Carlo errors which are smaller than
the symbol size. The inset compares the real axis spec-
trum obtained by analytical calculation to that obtained

directly from the exact solution. Apart from a broaden-
ing, the two procedures give the same result; in particular
the areas of the peaks are the same in the two methods.

Fig. 1 shows the calculated Raman B1g intensity at
carrier density n = 1, i.e. in the paramagnetic Mott in-
sulating phase. The spectra exhibit a two peak structure.
The peak at higher energies corresponds to quasiparticle
excitations across the Mott gap ∼ ω = 3t for the 8-site
(integrated area 2.5) and ∼ ω = 5t for the 4-site ap-
proximation (integrated area 3.1). We identify the lower
energy peak (area 1.0 for 4-site and 0.2 for 8-site) as
arising from the creation of a pair of spin flip excitations
because at n = 1 and large U these are the only excita-
tions available in this energy range. This identification
is corroborated by computations (inset) of the interac-
tion strength dependence in the 4-site cluster (present-
day computational limits preclude study of U > 7t for
the 8-site cluster): as U is increased the upper feature
shifts up in energy and the lower feature shifts down, as
expected for a peak scaling with J ∼ t2/U .

While the 4 and 8 site calculations are qualitatively
similar, they are quantitatively different. In the DCA ap-
proximation the 4-site cluster is known [7] to have prop-
erties different from all of the other clusters, among other
things strongly overestimating singlet formation and in-
sulating behavior. In the rest of this paper we focus
on the 8-site cluster, believed [7] to be more representa-
tive of the physics of the model. Clusters of much larger
size would be needed for a quantitative extrapolation to
the thermodynamic limit. These are not accessible with
present techniques.
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FIG. 3: Main panel: Raman B1g scattering intensity in 8-site
cluster for parameters U = 7t, t′ = −0.15t and β = 20/t at
dopings indicated. Inset: separation into bubble and total
contribution for x = 0.065.

Fig. 3 presents the evolution of the B1g spectra. When
the insulator is doped away from half-filling, the peak at
ω ∼ t broadens and shifts to lower frequency, while at
lowest frequencies a component χ(ω) ∼ ω appears and
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increases rapidly with doping. The inset decomposes the
x = 0.065 spectrum into bubble and vertex correction
(visible as the difference between the two curves). The
bubble diagram accounts for the entire quasiparticle part
while the vertex correction, which in the insulating state
gives rise to the two-spin-flip peak, produces the higher
frequency maximum. We therefore attribute the higher
frequency peak to the relic of the two spin-flip peak in
the metallic state and the low frequency χ(ω) ∼ ω feature
to quasiparticles. At the lowest dopings x = 0.065 and
x = 0.086 the pseudogap is visible as a change in slope
from the very low frequency regime (dominated by quasi-
particles) to an intermediate energy regime where much
of the scattering comes from the two spin-flip feature.
As the doping is increased beyond x = 0.1 the pseudogap
disappears, the two-spin flip and quasiparticle scatterings
merge, and the vertex correction decreases in importance,
becoming completely negligible by doping ∼ 0.24. These
data are in excellent semiquantitative agreement with the
B1g spectra reported in Fig. 9 of Ref. 34 and the t − J
model calculations shown in Fig. 2 of Ref. [35].
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FIG. 4: Temperature dependence of Raman B1g scattering
intensity in 8-site DCA at hole dopings indicated.

Fig. 4 shows the temperature dependence of the calcu-
lated Raman scattering intensity in B1g channel at dop-
ing level x = 0.065 (upper panel) and x = 0.16 (lower
panel). At the lower doping the low-frequency Raman
B1g intensity is suppressed as the temperature decreases,
whereas at the higher doping the initial slope is seen to
increase as the temperature decreases again consistent
with data (compare Fig. 4 to the upper left and upper
right panels of Fig. 1 of Ref. [36]).

We next turn to the B2g channel, which highlights
the zone diagonal region of the Brillouin zone. The
zone diagonal region is not affected by the pseudogap
and the quasiparticle velocity is high and may therefore
also be expected to dominate the optical conductivity

σ. This along with a standard relation for metals moti-
vated Ref.[37] to identify ImχB2g (ω)/ω with Reσ(ω) [37].
The main panel of Fig. 5 presents the B2g spectra as
ImχB2g

(ω)/ω. We see a ‘Drude’ peak centered at zero
frequency which grows noticeably and sharpens as dop-
ing is increased, and a broad higher-frequency continuum
which is only weakly doping dependent. The inset shows
that as temperature is varied the ‘Drude’ peak increases
in height and decreases in width; there is also a small
∼ 10% (not shown) increase in area with decreasing T .
These features bear a strong qualitative resemblance to
the optical conductivity data taken in the high-Tc cuprate
superconductors [38, 39].
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FIG. 5: Main panel: B2g Raman spectra calculated at U = 7t
and inverse temperature β = 20/t ≈ 200 K for hole dopings
indicated and presented as ImχB2g/ω. Inset: temperature
dependence of ImχB2g/ω for hole doping x = 0.13.

In this paper we have developed a new method for
treating the vertex corrections which are essential for
the computation of wide classes of experimentally rel-
evant spectroscopies of interacting electron systems. We
used the formalism to show that the two dimensional
Hubbard model accounts for the essential features of the
doping-dependent Raman spectra observed [34] in high-
Tc copper-oxide superconductors. The formalism intro-
duced here is straightforwardly generalizable to most
other response functions, for example to the momentum
dependent spin response needed for neutron scattering,
although in the special case of the optical conductivity
the Ward identity issues discussed in Ref. [40] create com-
plications which are not yet resolved. The additional
computational burden of our methods scales as a power
law in cluster size, whereas the equilibrium dynamical
mean-field computations themselves are limited by an
exponential barrier imposed by the fermion sign prob-
lem and Hilbert space size. Therefore we expect that
as computers grow more powerful, our methods can be
applied to essentially any case for which an equilibrium
DMFT solution is feasible, opening new directions for the
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theoretical understanding of correlated electron materi-
als.
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