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Simulations are used to determine the effect of inertia on athermal shear of amorphous two-
dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The
distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks.
Inertia takes the system to a new underdamped universality class rather than driving the system
away from criticality as previously thought. Scaling exponents are determined for the underdamped
and overdamped limits and a critical damping that separates the two regimes. Systems are in the
overdamped universality class even when most vibrational modes are underdamped.
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Many slowly driven physical systems exhibit long qui-
escent periods punctuated by rapid avalanches [1–3].
Phenomena as diverse as earthquakes, Barkhausen noise
in magnetic materials, dislocation cascades in single crys-
tal microcompression and fluid interface depinning dis-
play power law avalanche statistics in seismicity, acous-
tic emission, slip, stress drop or interface advance [4–11].
These power laws reflect a non-equilibrium critical tran-
sition at the onset of motion.

This Letter addresses a fundamental question about
the effect of inertia on such critical behavior. Power
law scaling has normally been observed in overdamped
systems. Studies of underdamped systems [2, 12–15] or
stress overshoot models designed to mimic inertia [16–
19], suggest that inertia drives systems away from the
critical point. In sandpiles, the onset of motion ap-
pears to become a hysteretic first-order transition [14].
In the Burridge-Knopoff model, inertia leads to a grow-
ing importance of non-critical, system spanning events
[15]. The conclusion that inertia destroys critical be-
havior seems at odds with the observation of power law
scaling in earthquakes and laboratory compression tests
[4, 8, 9], where seismic waves and acoustic emission indi-
cate that the systems are underdamped.

Here, quasistatic simulations of sheared amorphous
solids are performed over a full range of damping rates.
The results reveal a rich phase diagram. Different univer-
sality classes describe the overdamped and underdamped
limits, but both are described by critical finite-size scal-
ing relations. The transition between the two limits oc-
curs at a fixed damping rate that appears to have its own
scaling behavior. Overdamped scaling extends to surpris-
ingly small damping rates, where nearly all vibrational
modes are underdamped. The power law describing un-
derdamped avalanches is close to the Gutenberg-Richter
law and there is an excess of large events that is similar
to that seen in individual fault systems [20].

Since we are interested in the general question of how
inertia affects critical behavior, we choose a simple model
system. Work by Dahmen et al. suggests mean-field be-

havior extends to two dimensions [18, 19] and we con-
sider a two-dimensional binary mixture of disks that has
been widely studied as a model amorphous system [21–
25]. The disks may represent atoms, grains, bubbles,
colloids or volume elements of a deforming fault zone.
We focus on the athermal limit for three reasons: First,
it allows clear identification of small avalanches. Second,
other work indicates that temperature may drive systems
away from criticality [25]. Finally, macroscopic systems,
like fault zones or the photoelastic disks commonly used
in experiments[26, 27], are in the athermal limit.

Particles interact via the Lennard-Jones (LJ) poten-
tial, U(r) = 4u0[(aij/r)

6 − (aij/r)
12] where r is the mag-

nitude of the vector r between two disks and the species
i,j are of two types, A and B. To prevent crystallization,
the disks have different diameters aAA = 5/3 aBB = a
and aAB = 4/5 a. The LJ energy and force are taken
smoothly to zero at rc = 1.5aij using a polynomial fit
starting at 1.2aij [28]. Both disk types have mass m and
the number ratio NA/NB = (1 +

√
5)/4. The depth of

the potential u0 sets the energy scale of interactions. The
natural unit of time is tLJ =

√

ma2/u0.

Initial states are prepared as in Ref. [28], but, as there,
the protocol has little effect on steady state shear. After
annealing, the system contains N ∼ 103 − 106 disks in a
square unit cell with edge L = 55a to 875a and periodic
boundary conditions. The density ρ = 1.38a−2 and the
pressure is near zero. A pure shear strain ǫ is applied
to the system by changing the length of the periodic
simulation cell while holding the area constant so that
Lx = Le−ǫ and Ly = Leǫ. The strain rate |ǫ̇| < 10−6t−1

LJ

between avalanches was adjusted for each L to ensure
simulations were in the quasistatic limit where results
depend only on strain interval and not independently on
time. When an increase in kinetic energy indicated the
onset of plastic deformation, |ǫ̇| was reduced to zero to
allow the avalanche to evolve without external perturba-
tion. Shearing resumed after the kinetic energy dropped
below 1% of the background value during shear.

In order to model the athermal limit, the kinetic en-
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ergy released during avalanches must be removed by some
damping mechanism. A viscous drag force was applied
to each disk, Fdrag = −Γmv where v is the non-affine
velocity. As the dissipation rate Γ decreases, the dy-
namics changes from overdamped to underdamped (iner-
tial) dynamics. Vibrational modes with frequency ω > Γ
are underdamped, and it is useful to compare Γ to the
root mean squared or Einstein frequency ωE ≡

√

〈ω2〉 =
17t−1

LJ .

We focus on the steady state achieved after plastic re-
arrangements have erased memory of the initial state
(ǫ > 7%). While the system is trapped in a local en-
ergy minimum, work done by the applied strain leads to
a nearly linear rise in potential energy and shear stress
σs. When the minimum becomes unstable, there is a
rapid avalanche of activity that leads to a sharp drop by
E in energy and by ∆σs in shear stress. In the over-
damped limit, the system is trapped in the next local
energy minimum. When damping is reduced, inertia can
carry the system over subsequent energy barriers to reach
lower energy states. One dramatic consequence is that
the mean potential energy sampled by systems decreases
by 30% as Γ decreases. Indeed, there is almost no overlap
between the ranges of potential energy sampled for the
three damping rates studied in detail below, ΓtLJ = 1,
0.1 and 0.001.

A sum rule requires that the energy and stress drops
in large events are proportional [29]. We find that this
relation breaks down for small events and that consider-
ing both quantities facilitates identification of the criti-
cal region. To simplify comparison we rescale the stress
drop by a constant factor to give a corresponding energy
S ≡ ∆σsL

2 〈σs〉 /4µ, where 〈σs〉 is the mean shear stress,
µ is the shear modulus and 〈σs〉 /4µ ≈ 0.02 for all Γ and
L. To quantify the distributions of event sizes, we define
the event rates R(S,L) and R(E,L) as the number of
events of energy S or E per unit energy and unit strain
in a system of size L.

Figure 1 shows R(S,L) for different L in the over-
damped (ΓtLJ = 1) and underdamped (ΓtLJ = 0.001)
limits. In contrast to other slowly driven systems that
exhibit power law avalanche distributions [10, 11], the
number of small events does not scale linearly with the
system size, L2. The rates for different L collapse when
scaled by Lγ with γ = 1.2 and 1.3 for overdamped and
underdamped systems, respectively. This implies that as
L increases large events suppress small events either by
changing the local configurations so small events are less
likely to occur, or by increasing the probability that the
same local configuration will produce a large avalanche.

The distributions for both overdamped and under-
damped systems saturate at low S and decrease as a
power law R(S,L) ∝ S−τ for S > 0.3u0. The power laws
are different, indicating that inertia changes the univer-
sality class. For each Γ, results for each L follow the
power law up to a maximum size that increases with L
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FIG. 1: Scaling of R(S,L) with S for overdamped, ΓtLJ = 1,
systems with γ = 1.3 (lower curves) and underdamped,
ΓtLJ = 0.001, systems with γ = 1.2 (upper curves). Un-
derdamped curves are multiplied by 100 to prevent overlap,
symbols indicate L/a and symbol size is larger than statistical
errors. Lines indicate the power laws obtained from finite-size
scaling fits (Table I).

because larger systems allow larger avalanches. For the
overdamped case, there is a simple monotonic drop in R
at large S. The underdamped behavior is unusual be-
cause there is a plateau at large S, followed by a rapid
drop. It is interesting to note that similar plateaus are
observed in the distribution of earthquakes from individ-
ual fault systems [20].
The slope of curves in Fig. 1 can be used to estimate

the power law exponent τ , but it is difficult to know
where the critical scaling regime starts and ends. More
accurate critical exponents are obtained using finite-size
scaling methods [30] that focus on the scaling of large
events. The distributions for both S and E are assumed
to obey the finite-size scaling ansatz:

R(X,L) = Lβg(X/Lα) , (1)

where X stands for S or E, the size of the largest events
scales as Lα, and g is an unknown scaling function. The
form of g(y) at large y may depend on the boundary
conditions used, but the scaling exponents do not [30].
Equation 1 produces power law scaling for X << Lα

if g(y) ∝ y−τ for y << 1. One finds R(X,L) ∝ LγX−τ

with γ = β + ατ . We can derive another scaling relation
between exponents using the fact that the total energy
dissipated per unit strain is Ld 〈σs〉 with dimension d = 2.
The dissipated energy must also equal the sum of E or S
over all avalanches. Integrating XR(X,L) using Eq. 1,
one finds that β+2α = d as long as the integral of yg(y)
is well-defined.
As shown in Figure 2 excellent finite-size scaling col-

lapses are obtained for E and S in both overdamped
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(Γ = 1) and underdamped (Γ = 0.001) limits. Values
of α, β, γ and τ (Table I) were determined separately
and then checked for consistency with the above scaling
relations. A key feature of the underdamped results is
that the plateaus for large events at different L collapse
onto common curves. Thus the avalanche statistics are
consistent with critical scaling even if the form of the
scaling function is unusual.
As the event size decreases, results for each L follow

the scaling function g for the given Γ until events are too
small to be in the scaling regime. Analysis of the curves
shows that this corresponds to S and E of order u0. This
is the energy of a single bond and analysis of events with
much lower energy shows they are qualitatively differ-
ent. Additional evidence that they are not in the critical
regime comes from the sharply different behavior of S
and E. Results for S tend to saturate for S < u0, while
results for E cross over to power law scaling with a lower
exponent that changes slightly with L.
Previous studies have only considered the overdamped

limit and used system sizes L ≤ 109 [21, 29, 31, 32]. For
these systems most events are in the noncritical scaling
regime, E < u0, explaining variations in the reported val-
ues of α [21, 29] and why some papers concluded there
was no critical behavior [31, 32]. Values of the scaling
exponent τ have not been reported in previous studies
of sheared amorphous solids [21–23, 29] , but τ has been
studied for a simpler lattice model by Dahmen et al. [19].
Their results suggest that τ has a mean-field value of 1.5
for all d in overdamped systems [19]. Our result of 1.25 is
lower than this prediction, but substantially higher than
the values of τ < 1 that would be inferred from the non-
critical power law region at small E in Fig. 2.
We now examine the transition between overdamped

and underdamped limits as Γ varies. Given the large
difference in α for the two cases, the scaling of large
events will change sharply with Γ. A useful measure of
the largest events is the ratio

〈

S2
〉

/ 〈S〉 [33]. As shown in

Fig. 3(a), results for
〈

S2
〉

/ 〈S〉Lα at all L collapse onto
a universal curve with the overdamped α = 0.9 at large
Γ. Separate simulations using the energy minimization
(ΓtLJ → ∞) algorithm of many previous studies [21–
23] were statistically indistinguishable from results for
ΓtLJ ≥ 1. As ΓtLJ decreases from 1 to 0.1, the mean
avalanche size increases in the same way for all L, in-
dicating that α remains constant and the system is in
the same universality class. Since ωEtLJ = 17, systems
remain in the overdamped universality class even when
almost all vibrational modes are underdamped. The key
factor is not whether modes are overdamped but whether
inertia can carry the system over the next energy barrier
in the energy landscape. A small Γ can trap the system
in the nearest minimum if the difference in successive en-
ergy barriers is small and/or the path in phase space to
the next barrier is complicated.
Fig. 3(b) shows that the underdamped α = 1.55 col-
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FIG. 2: (a) Finite-size scaling collapse of R(S,L) and R(E,L)
for overdamped systems (ΓtLJ = 1), underdamped systems
(ΓtLJ = 0.001) and critically damped systems (ΓtLJ = 0.1)
using the exponents in Table I. Statistical errors are smaller
than the symbols and successive curves are shifted up by 2 or
3 decades to prevent overlap.

lapses results for different L when ΓtLJ ≤ 0.01. For
the simple viscous drag −Γmv employed here, the sys-
tem is always overdamped at wavelengths larger than a
length of order c/Γ, where c = 3.4a/tLJ is the shear ve-
locity. One may ask whether the avalanche distribution
would always exhibit overdamped behavior on lengths
larger than this scale, which is comparable to our largest
system sizes when ΓtLJ ≤ 0.01. We see no evidence of
such a crossover at larger Γ, but stronger evidence is
obtained by considering other thermostats. A viscous
drag is only appropriate for systems with an inertial ref-
erence frame, such as photoelastic disks on a substrate
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(a) ΓtLJ with α = 0.9 and (b) ΓL/c with α = 1.55. Statistical
errors are comparable to the symbol size.
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Γ τ α β γ
1.0 1.25 ± 0.05 0.9± 0.05 0.2± 0.1 1.3± 0.05
0.1 1.0 ± 0.05 0.9± 0.05 0.3± 0.1 1.2± 0.05

0.001 1.5± 0.1 1.55± 0.1 −1.1± 0.1 1.2± 0.1

TABLE I: Scaling exponents determined for overdamped (Γ =
1) and underdamped (Γ = 0.001) limits and at the transition
between them Γ = 0.1. Quoted values satisfy the scaling rela-
tions β+2α = d and γ = β+ατ and errorbars are estimated
from the quality of finite-size scaling collapses for E and S
using other Γ and moments.

[26, 27]. In isolated disordered solids dissipation mech-
anisms must be Galilean-invariant and only damp rela-

tive velocities. In this case, long wavelength modes are
always underdamped [34]. We have also performed simu-
lations with the Galilean invariant thermostats described
in Refs. [28, 35]. As illustrated in the supplemental ma-
terial, these thermostats give the same avalanche distri-
butions as a viscous drag in both the overdamped and
underdamped limits. Moreover, the crossover between
the two limits occurs over a comparable range of Γ. We
thus conclude that for small Γ the power law distribution
of avalanches is only cut off by the system size and not
c/Γ.

The results in Fig. 3(a) show that there is a change
in scaling at ΓtLJ ≈ 0.1. Figure 2 also presents a finite-
size scaling collapse of avalanche distributions for this
critical damping, which has its own exponents (Table I).
The results for E follow a power law with τ = 1 over 6
decades or more. We have found similar scaling for in-
termediate damping with Galilean invariant thermostats,
for different interaction potentials, for simple shear, and
in preliminary studies of 3D systems. This suggests that
ΓtLJ = 0.1 represents a multicritical point separating re-
gions that flow to underdamped and overdamped fixed
points.

In conclusion, introducing inertia does not destroy crit-
ical scaling of avalanches in quasistatic shear of disor-
dered solids. Systems continue to be in the overdamped
universality class even when most vibrational modes are
underdamped. Only a small amount of damping is
needed to prevent inertia from carrying systems over se-
quential energy barriers, implying that the difference be-
tween energy barriers is small or the path between them
complex.

Below a critical damping rate a new universality class
corresponding to the underdamped limit is identified.
While our system lacks the complexity found in earth-
quake faults, it is interesting to note that τ is close to
the value of ∼ 1.6 for laboratory compression tests [8, 9]
and the Gutenberg-Richter law [20]. In addition, the dis-
tribution of earthquakes for a given fault system typically
has an excess of large events that is similar to the plateau
seen in Figs. 1 and 2 [20].

Different scaling exponents are observed at the criti-

cal damping rate that separates overdamped and under-
damped limits, indicating that it is a multicritical point.
The scaling exponents in all three regimes (Table I) sat-
isfy the scaling relations β+2α = d and γ = β+ατ . The
hyperscaling relation γ = d is violated in all cases. The
number of avalanches at a given energy rises less rapidly
than system size (γ < d), indicating that small events
are suppressed by the larger events in bigger systems.
Exponents obtained from finite-size scaling of the distri-
bution of energy and stress drops are consistent. How-
ever, there is a long power law tail in R(E,L) at small E
with a size dependent exponent and system-size indepen-
dent cutoff. This tail appears to have dominated previous
scaling studies using smaller systems [21, 29, 31, 32, 36]
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